ATI TEAS 7
TEAS Test Practice Math
1. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
2. If 9.5% of a town's population of 51,623 people voted for a proposition, approximately how many people voted for the proposition?
- A. 3000
- B. 5000
- C. 7000
- D. 10000
Correct answer: B
Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted: 51,623 * 9.5% = 51,623 * 0.095 ≈ 4,904. Therefore, approximately 5,000 people voted for the proposition. Choice A (3000), C (7000), and D (10000) are incorrect because they do not accurately represent 9.5% of the town's population.
3. In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
- A. 0.23
- B. 0.3
- C. 0.47
- D. 0.77
Correct answer: A
Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 ÷ 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.
4. A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?
- A. $2,240
- B. $2,800
- C. $3,360
- D. $4,480
Correct answer: C
Rationale: The field is a hexagon with six equal sides, each 320 feet long. To find the total cost of fencing material needed, multiply the cost per foot ($75) by the total perimeter of the field (6 sides x 320 feet). Therefore, the total cost will be $75 x 6 x 320 = $3,360. Thus, the farmer will need to spend $3,360 on fencing material. Choice A, $2,240, is incorrect as it does not account for the total perimeter of the field. Choice B, $2,800, is incorrect as it underestimates the total cost by not considering all sides of the hexagon. Choice D, $4,480, is incorrect as it overestimates the total cost by multiplying incorrectly or considering extra sides.
5. If a train travels 60 miles per hour for 2 hours, how far does the train travel?
- A. 60 miles
- B. 100 miles
- C. 120 miles
- D. 200 miles
Correct answer: C
Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access