ATI TEAS 7
TEAS Test Practice Math
1. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
2. How should 0.80 be written as a percent?
- A. 40%
- B. 125%
- C. 90%
- D. 80%
Correct answer: D
Rationale: To convert a decimal to a percent, move the decimal point two places to the right. Therefore, 0.80 written as a percent is 80%. Choice A is incorrect as it represents 40%. Choice B is incorrect as it represents 125%. Choice C is incorrect as it represents 90%.
3. How many centimeters are in 7 meters?
- A. 7 m = 7 cm
- B. 7 m = 70 cm
- C. 7 m = 700 cm
- D. 7 m = 7000 cm
Correct answer: C
Rationale: The prefix 'centi-' means one-hundredth. In the metric system, 1 meter is equal to 100 centimeters. Therefore, to convert meters to centimeters, you multiply the number of meters by 100. In this case, 7 meters is equal to 7 * 100 = 700 centimeters. Choice A is incorrect as it does not consider the conversion factor properly. Choice B is incorrect as it only accounts for a factor of 10 instead of 100. Choice D is incorrect as it overestimates the conversion by a factor of 10.
4. Arrange the following numbers from least to greatest: 7/3, 9/2, 10/9, 7/8
- A. 10/9, 7/3, 9/2, 7/8
- B. 9/2, 7/3, 10/9, 7/8
- C. 7/3, 9/2, 10/9, 7/8
- D. 7/8, 10/9, 7/3, 9/2
Correct answer: D
Rationale: To arrange the numbers from least to greatest, first convert them to decimals: 1. 7/3 is approximately 2.33 2. 9/2 equals 4.5 3. 10/9 is approximately 1.11 4. 7/8 equals 0.875 Now, arrange the decimals from least to greatest: 0.875 (7/8), 1.11 (10/9), 2.33 (7/3), 4.5 (9/2). Therefore, the correct order is 7/8, 10/9, 7/3, 9/2. Choice A is incorrect because it doesn't follow the correct order. Choice B is incorrect as it places 9/2 before 7/3, which is not the right arrangement. Choice C is incorrect as it places 7/3 before 9/2 and 10/9, which is incorrect. Thus, the correct answer is choice D.
5. What defines rational and irrational numbers?
- A. Any number that can be expressed as a fraction; any number that cannot be expressed as a fraction
- B. Any number that terminates or repeats; any number that does not terminate or repeat
- C. Any whole number; any decimal
- D. Any terminating decimal; any repeating decimal
Correct answer: A
Rationale: Rational numbers are those that can be written as a simple fraction, including whole numbers and decimals that either terminate or repeat. Irrational numbers, on the other hand, cannot be expressed as fractions. Choice B is incorrect because not all rational numbers necessarily terminate or repeat. Choice C is incorrect as it oversimplifies the concept of rational and irrational numbers by only considering whole numbers and decimals. Choice D is incorrect as it inaccurately defines rational and irrational numbers solely based on decimals terminating or repeating, excluding the broader category of fractions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access