ATI TEAS 7
TEAS Math Practice Test
1. What is the mode of the set of numbers {4, 4, 5, 7, 8}?
- A. 4
- B. 5
- C. 7
- D. 8
Correct answer: A
Rationale: The mode of a set of numbers is the value that appears most frequently. In the given set {4, 4, 5, 7, 8}, the number 4 appears twice, which is more frequent than any other number. Therefore, the mode of this set is 4. Choice B, 5, is incorrect as it only appears once in the set. Choices C and D, 7 and 8 respectively, also appear only once each, making them less frequent than the number 4.
2. In a class of 30 students, with 60% boys and 40% girls, how many girls are in the class?
- A. 18 girls
- B. 12 girls
- C. 15 girls
- D. 10 girls
Correct answer: B
Rationale: To find the number of girls in the class, we need to calculate 40% of the total number of students, which is 30. 40% of 30 is 0.40 * 30 = 12 girls. Therefore, there are 12 girls in the class. Choice A, 18 girls, is incorrect as it miscalculates the percentage. Choice C, 15 girls, is incorrect as it misrepresents the correct calculation. Choice D, 10 girls, is incorrect as it underestimates the number of girls in the class.
3. Can a rational number be a fraction or decimal, or must it be a whole number?
- A. It must be a whole number
- B. It can be a fraction or decimal
- C. It can be any of the three
- D. It cannot be a decimal
Correct answer: C
Rationale: The correct answer is C. A rational number can be a whole number, fraction, or decimal. A rational number is any number that can be expressed as a ratio of two integers (where the denominator is not zero), which includes whole numbers, fractions, and decimals. Choice A is incorrect because rational numbers are not limited to being whole numbers. Choice B is incorrect because a rational number can be a fraction, decimal, or whole number. Choice D is incorrect because rational numbers can definitely be decimals, as long as the decimal representation is either terminating or repeating.
4. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized after taking the antibiotic, we need to calculate 30% of 5%. First, convert 30% and 5% to decimals: 30% = 0.30 and 5% = 0.05. Multiply 0.30 by 0.05 to get 0.015. To convert 0.015 to a percentage, multiply by 100, resulting in 1.5%. Therefore, only 1.50% of Dr. Lee's patients were hospitalized after taking the antibiotic. Choice A is correct. Choice B (5%) is incorrect as it represents the percentage of patients who developed an infection and not those hospitalized. Choices C (15%) and D (30%) are also incorrect percentages as they do not accurately reflect the proportion of hospitalized patients in this scenario.
5. A patient requires a 20% decrease in medication dosage. Their current dosage is 400 mg. What will their dosage be after the decrease?
- A. 60 mg
- B. 80 mg
- C. 120 mg
- D. 320 mg
Correct answer: B
Rationale: To calculate a 20% decrease of 400 mg, you multiply 400 mg by 0.20 to get 80 mg. Subtracting 80 mg from the current dosage of 400 mg results in a new dosage of 320 mg. Choice A is incorrect because it miscalculates the decrease. Choice C is incorrect as it represents a 20% increase instead of a decrease. Choice D is incorrect as it represents the initial dosage, not the reduced dosage.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access