ATI TEAS 7
TEAS Practice Test Math
1. What is an exponent?
- A. A number that tells how many times to multiply
- B. A number that is multiplied
- C. A number that divides evenly into another number
- D. A number that represents the square of a number
Correct answer: A
Rationale: An exponent is a number that indicates how many times a base number is multiplied by itself. The correct answer (A) accurately defines an exponent as a multiplier that shows how many times a number should be multiplied by itself. Choice B is incorrect as it describes a factor rather than an exponent. Choice C is incorrect as it defines a divisor, not an exponent. Choice D is incorrect as it specifically refers to the square of a number, which is not a general definition of an exponent.
2. Jeremy put a heavy chalk mark on the tire of his bicycle. His bike tire is 27 inches in diameter. When he rolled the bike, the chalk left marks on the sidewalk. Which expression can be used to best determine the distance, in inches, the bike rolled from the first mark to the fourth mark?
- A. 3(27Ï€)
- B. 4Ï€(27)
- C. (27 ÷ 3)π
- D. (27 ÷ 4)π
Correct answer: A
Rationale: The distance traveled by the bike in one complete roll of the tire is equal to the circumference, which can be calculated using the formula C = πd, where d is the diameter. Given that the diameter of the bike tire is 27 inches, the circumference is obtained by multiplying the diameter by π. As the tire rolls from the first mark to the fourth mark, it completes three full rotations (one complete roll plus two more). Therefore, the total distance rolled is 3 times the circumference, which results in 3(27π). Choice A is correct. Choice B is incorrect as it incorrectly multiplies the diameter by 4π instead of multiplying the circumference by 4. Choices C and D are incorrect as they involve dividing the diameter by a number, which is not applicable in this context.
3. What is any number raised to the power of zero?
- A. One
- B. Itself
- C. Zero
- D. Two
Correct answer: A
Rationale: The correct answer is A: One. Any number raised to the power of zero is always equal to 1. This is a fundamental property of exponentiation. Choice B, 'Itself,' is vague and does not specify a numerical value. Choice C, 'Zero,' is incorrect as any nonzero number raised to the power of zero is 1, not 0. Choice D, 'Two,' is incorrect as any number raised to the power of zero is 1, not 2.
4. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
5. What is the area of a rectangle with a length of 5 cm and a width of 4 cm?
- A. 9 cm²
- B. 20 cm²
- C. 10 cm²
- D. 25 cm²
Correct answer: B
Rationale: To find the area of a rectangle, you multiply its length by its width. In this case, the length is 5 cm and the width is 4 cm. So, Area = length * width = 5 cm * 4 cm = 20 cm². Therefore, the correct answer is 20 cm². Choice A (9 cm²), Choice C (10 cm²), and Choice D (25 cm²) are incorrect as they do not result from the correct calculation of multiplying the length and width of the rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access