ATI TEAS 7
TEAS Math Practice Test
1. 4.67 miles is equivalent to how many kilometers to three significant digits?
- A. 7.514 km
- B. 7.51 km
- C. 2.90 km
- D. 2.902 km
Correct answer: B
Rationale: To convert miles to kilometers, we use the conversion factor of 1 mile ≈ 1.60934 km. Therefore, 4.67 miles * 1.60934 km/mile = 7.514 km. When rounded to three significant digits, the answer is 7.51 km. Choice A of 7.514 km is the correct conversion, but the question asked for the answer to be rounded to three significant digits, making choice B, 7.51 km, the most precise and correct option. Choices C and D are incorrect conversions and do not match the correct conversion of 4.67 miles to kilometers.
2. What defines rational and irrational numbers?
- A. Any number that can be expressed as a fraction; any number that cannot be expressed as a fraction
- B. Any number that terminates or repeats; any number that does not terminate or repeat
- C. Any whole number; any decimal
- D. Any terminating decimal; any repeating decimal
Correct answer: A
Rationale: Rational numbers are those that can be written as a simple fraction, including whole numbers and decimals that either terminate or repeat. Irrational numbers, on the other hand, cannot be expressed as fractions. Choice B is incorrect because not all rational numbers necessarily terminate or repeat. Choice C is incorrect as it oversimplifies the concept of rational and irrational numbers by only considering whole numbers and decimals. Choice D is incorrect as it inaccurately defines rational and irrational numbers solely based on decimals terminating or repeating, excluding the broader category of fractions.
3. Calculate the sum of the numbers from 1 to 6:
- A. 30
- B. 21
- C. 15
- D. 13
Correct answer: B
Rationale: To find the sum of numbers from 1 to 6, we add them together: 1 + 2 + 3 + 4 + 5 + 6 = 21. Therefore, the correct answer is 21. Choice A (30) is incorrect because it is not the sum of the numbers 1 to 6. Choice C (15) is incorrect as it is the sum of numbers 1 to 5. Choice D (13) is incorrect as it is the sum of numbers 1 to 4, not 1 to 6.
4. Which of the following describes a proportional relationship?
- A. Johnathan opens a savings account with an initial deposit of $150 and deposits $125 per month
- B. Bruce pays his employees $12 per hour worked during the month of December, as well as a $250 bonus
- C. Alvin pays $28 per month for his phone service plus $0.07 for each long-distance minute used
- D. Kevin drives 65 miles per hour
Correct answer: A
Rationale: A proportional relationship is one in which two quantities vary directly with each other. In choice A, the amount deposited per month is directly proportional to the initial deposit. The relationship can be represented as y = 125x + 150, where x is the number of months and y is the total amount in the account. Choices B and C involve additional fixed amounts or variable costs that do not maintain a constant ratio, making them non-proportional relationships. Choice D refers to a constant speed of driving, which is not a proportional relationship as it does not involve varying quantities that change in direct proportion.
5. A recipe calls for 0.375 cups of sugar, but you only want to make 0.625 of the recipe. How much sugar should you use?
- A. 1.125 cups
- B. 1.111 cups
- C. 0.6 cups
- D. 2.4 cups
Correct answer: C
Rationale: To find out how much sugar should be used when making 0.625 of the recipe, you need to multiply 0.375 (amount required for the full recipe) by 0.625 (proportion of the recipe you want to make). 0.375 * 0.625 = 0.234375. Therefore, you should use 0.234375 cups of sugar, which is equivalent to 0.6 cups. This is the correct answer. Choices A, B, and D are incorrect because they do not correctly calculate the adjusted amount of sugar needed based on the proportion of the recipe being made.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access