ATI TEAS 7
TEAS 7 Math Practice Test
1. Two even integers and one odd integer are multiplied together. Which of the following could be their product?
- A. 3.75
- B. 9
- C. 16.2
- D. 24
Correct answer: D
Rationale: When multiplying two even integers and one odd integer, the product will always be even. This is because multiplying any number of even integers will always result in an even number. Therefore, the only possible product from the given options is 24, as it is the only even number listed. Choices A, B, and C are incorrect as they are all odd numbers, and the product of two even integers and one odd integer will never result in an odd number.
2. When the weights of the newborn babies are graphed, the distribution of weights is symmetric with the majority of weights centered around a single peak. Which of the following describes the shape of this distribution?
- A. Uniform
- B. Bimodal
- C. Bell-shaped
- D. Skewed right
Correct answer: C
Rationale: The correct answer is C: Bell-shaped. A symmetric distribution with a single peak is characteristic of a bell-shaped distribution, also known as a normal distribution. This distribution forms a symmetrical, bell-like curve when graphed. Choice A, 'Uniform,' would describe a distribution where all values have equal probability. Choice B, 'Bimodal,' would indicate a distribution with two distinct peaks. Choice D, 'Skewed right,' suggests a distribution where the tail on the right side is longer or more pronounced, unlike the symmetrical bell-shaped distribution described in the question.
3. What is the area of the largest circle that can fit entirely inside a rectangle that measures 8 centimeters by 10 centimeters?
- A. 18π cm²
- B. 10π cm²
- C. 16π cm²
- D. 8π cm²
Correct answer: C
Rationale: The largest circle that can fit inside the rectangle would have a diameter of 8 cm, which means the radius is half of the diameter, thus 4 cm. The area of a circle is calculated using the formula A = πr², where r is the radius. Substituting the radius value into the formula, the area of the circle is π(4)² = 16π cm². Therefore, the correct answer is 16π cm². Choice A (18π cm²), B (10π cm²), and D (8π cm²) are incorrect because they do not represent the area of the largest circle that fits inside the given rectangle.
4. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?
- A. 3,000 people
- B. 5,000 people
- C. 7,000 people
- D. 10,000 people
Correct answer: B
Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.
5. Between the years 2000 and 2010, the number of births in the town of Daneville increased from 1432 to 2219. What is the approximate percent increase in the number of births?
- A. 55%
- B. 36%
- C. 64%
- D. 42%
Correct answer: A
Rationale: To calculate the percent increase, subtract the initial value from the final value, which gives 2219 - 1432 = 787. Then, divide the increase (787) by the initial value (1432) and multiply by 100 to get the percentage: (787/1432) * 100 = 55%. Therefore, the approximate percent increase in the number of births is 55%. Choice B, 36%, is incorrect because it does not match the calculated increase. Choice C, 64%, is incorrect as it is higher than the actual percentage. Choice D, 42%, is incorrect as it is lower than the actual percentage.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access