ATI TEAS 7
TEAS Test Practice Math
1. The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
- A. 10
- B. 15
- C. 20
- D. 25
Correct answer: B
Rationale: To find the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost, we set up the inequality 400x >= 3000 + 100x. Simplifying this inequality gives 300x >= 3000, and dividing by 300 results in x >= 10. Therefore, at least 15 computers must be shipped and sold to cover the shipping cost, making choice B the correct answer. Choices A, C, and D are incorrect as they represent numbers less than 15, which would not cover the shipping cost.
2. A car dealership’s commercials claim that this year’s models are 20% off the list price, plus they will pay the first 3 monthly payments. If a car is listed for $26,580, and the monthly payments are set at $250, what is the total potential savings?
- A. $1,282
- B. $5,566
- C. $6,066
- D. $20,514
Correct answer: C
Rationale: To calculate the total potential savings: First, find the 20% discount on the list price of $26,580: 0.20 × $26,580 = $5,316. Then, determine the savings over the first 3 months of payments: 3 months × $250/month = $750. Add the discount and the monthly payment savings to get the total potential savings: $5,316 + $750 = $6,066. Therefore, the correct answer is $6,066. Choice A, $1,282, is incorrect because it does not account for the total savings from both the discount and the monthly payments. Choice B, $5,566, is incorrect as it miscalculates the total savings by excluding the savings from the monthly payments. Choice D, $20,514, is incorrect as it does not consider the discount and only focuses on the list price.
3. The scatter plot below shows the relationship between the students' exam scores and their heights. Which type of correlation is depicted in the scatter plot?
- A. Positive
- B. Positive and Negative
- C. Negative
- D. No correlation
Correct answer: D
Rationale: The scatter plot illustrates the relationship between students' exam scores and heights. There is no correlation between these variables, as height is not expected to have a direct impact on exam scores. Therefore, choice D, 'No correlation,' is the correct answer. Choices A, 'Positive,' and C, 'Negative,' are incorrect because the scatter plot does not indicate a positive or negative correlation between exam scores and heights. Choice B, 'Positive and Negative,' is also incorrect because the scatter plot does not exhibit both positive and negative correlations simultaneously.
4. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
5. The length of a rectangle is 3 units greater than its width. Which expression correctly represents the perimeter of the rectangle?
- A. 2W + 2(W + 3)
- B. W + W + 3
- C. W(W + 3)
- D. 2W + 2(3W)
Correct answer: A
Rationale: To find the perimeter of a rectangle, you add up all its sides. In this case, the length is 3 units greater than the width, so the length can be expressed as W + 3. The formula for the perimeter of a rectangle is 2W + 2(L), where L represents the length. Substituting W + 3 for L, the correct expression for the perimeter becomes 2W + 2(W + 3), which simplifies to 2W + 2W + 6 or 4W + 6. Choices B, C, and D do not correctly represent the formula for the perimeter of a rectangle. Choice B simply adds the width twice to 3, neglecting the length. Choice C multiplies the width by the sum of the width and 3, which is incorrect. Choice D combines the width and 3 times the width, which is not the correct formula for the perimeter of a rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access