ATI TEAS 7
TEAS Test Practice Math
1. The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
- A. 10
- B. 15
- C. 20
- D. 25
Correct answer: B
Rationale: To find the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost, we set up the inequality 400x >= 3000 + 100x. Simplifying this inequality gives 300x >= 3000, and dividing by 300 results in x >= 10. Therefore, at least 15 computers must be shipped and sold to cover the shipping cost, making choice B the correct answer. Choices A, C, and D are incorrect as they represent numbers less than 15, which would not cover the shipping cost.
2. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
3. Which is larger, feet or meters? What is the correct conversion factor between feet and meters?
- A. Feet are larger; 1 foot is 0.3048 meters
- B. Meters are larger; 1 meter is 3.28 feet
- C. Feet are smaller; 1 foot is 0.5 meters
- D. Meters are smaller; 1 meter is 2 feet
Correct answer: A
Rationale: The correct answer is A. Feet are larger than meters. The conversion factor between feet and meters is 1 foot = 0.3048 meters. Choice B is incorrect as it states that meters are larger than feet, which is the opposite of the truth. Choice C is incorrect as it provides an incorrect conversion factor of 1 foot = 0.5 meters, which is inaccurate. Choice D is also incorrect as it suggests that meters are smaller than feet, which is not true.
4. Which of the following is equivalent to 3.28?
- A. (328/100)
- B. (41/5)
- C. (3/28)
- D. (7/25)
Correct answer: D
Rationale: To convert a decimal to a fraction, we can treat it as a fraction over 1 and then simplify. For 3.28, it can be written as 3.28/1. To convert this to a fraction, we multiply by 100 to get (328/100). Then, to simplify, we divide both the numerator and denominator by 4 to get (82/25). This simplifies further to (7/25). Therefore, (7/25) is equivalent to 3.28. Choices A, B, and C are incorrect as they do not represent the decimal 3.28.
5. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access