the value of 6 x 12 is the same as
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. The value of 6 x 12 is the same as:

Correct answer: A

Rationale: To find the value of 6 x 12, we multiply 6 by 12, which equals 72. A: 2 x 4 x 4 x 2 = 32 B: 7 x 4 x 3 = 84 C: 6 x 6 x 3 = 108 D: 3 x 3 x 4 x 2 = 72 Therefore, the correct answer is A, as the product of 2 x 4 x 4 x 2 equals 32, which is the same as 6 x 12.

2. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?

Correct answer: B

Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.

3. How is the number -4 classified?

Correct answer: C

Rationale: The number -4 is classified as a real number because it exists on the number line. It is also a rational number since it can be expressed as -4/1. Additionally, -4 is an integer because it is a whole number that can be positive, negative, or zero. However, -4 is not a whole number because whole numbers are non-negative integers starting from zero. Similarly, -4 is not a natural number since natural numbers are positive integers starting from one. Therefore, the correct classification for the number -4 is real, rational, and integer, making option C the correct answer.

4. Which of the following is the independent variable in the equation below? f(t)=4t+9

Correct answer: C

Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.

5. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.

Correct answer: D

Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.

Similar Questions

If , then
A teacher earns $730.00 per week before any tax deductions. The following taxes are deducted each week: $72.00 federal income tax, $35.00 state income tax, and $65.00 Social Security tax. How much will the teacher make in 4 weeks after taxes are deducted?
The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
What is the area of a rectangle with a length of 5 cm and a width of 4 cm?
What defines a proper fraction versus an improper fraction?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses