ATI TEAS 7
TEAS Exam Math Practice
1. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
2. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
3. Which of the following is listed in order from least to greatest? (-3/4, -7 4/5, -8, 18%, 0.25, 2.5)
- A. -3/4, -7 4/5, -8, 18%, 0.25, 2.5
- B. -8, -7 4/5, -3/4, 18%, 0.25, 2.5
- C. 18%, 0.25, -3/4, 2.5, -7 4/5, -8
- D. -8, -7 4/5, -3/4, 18%, 0.25, 2.5
Correct answer: D
Rationale: To arrange the numbers from least to greatest, we first compare the integers, then the fractions, and finally the percentages and decimals. The correct order is -8, -7 4/5, -3/4, 18%, 0.25, 2.5. Choice A is incorrect because it incorrectly orders the fractions. Choice B is incorrect because it incorrectly places -8 after the fractions. Choice C is incorrect because it starts with the percentages instead of the integers, leading to an incorrect order.
4. A patient requires a 20% decrease in medication dosage. Their current dosage is 400 mg. What will their dosage be after the decrease?
- A. 60 mg
- B. 80 mg
- C. 120 mg
- D. 320 mg
Correct answer: B
Rationale: To calculate a 20% decrease of 400 mg, you multiply 400 mg by 0.20 to get 80 mg. Subtracting 80 mg from the current dosage of 400 mg results in a new dosage of 320 mg. Choice A is incorrect because it miscalculates the decrease. Choice C is incorrect as it represents a 20% increase instead of a decrease. Choice D is incorrect as it represents the initial dosage, not the reduced dosage.
5. Veronica is making a holiday schedule. 35% of staff members will be on vacation, and 20% of the remainder are certified to work. What percentage of the staff is certified and available?
- A. 0.07
- B. 0.13
- C. 0.65
- D. 0.8
Correct answer: A
Rationale: To find the percentage of staff certified and available, we first calculate the percentage of staff members not on vacation, which is 100% - 35% = 65%. Then, 20% of this group is certified to work, which is 20% of 65% = 0.20 * 65% = 13%. Therefore, Veronica has 13% of the staff certified and available to work. The correct answer is 0.13 (or 13%). Choice C (0.65) is incorrect because it represents the percentage of staff members not on vacation, not the percentage that is certified and available. Choice D (0.8) is incorrect as it is not the correct percentage of staff members certified and available. Choice B (0.13) is the correct answer, not choice A (0.07), as 0.07 represents 7%, not 13%.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access