ATI TEAS 7
TEAS Exam Math Practice
1. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
2. If a train travels 60 miles per hour for 2 hours, how far does the train travel?
- A. 60 miles
- B. 100 miles
- C. 120 miles
- D. 200 miles
Correct answer: C
Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.
3. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
4. A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient’s final dosage?
- A. 20 mg
- B. 42 mg
- C. 228 mg
- D. 248 mg
Correct answer: C
Rationale: To calculate the final dosage, first find 1/5 of 310 mg, which is 62 mg, and subtract it from the original dosage. This gives 310 mg - 62 mg = 248 mg. Then, subtract an additional 20 mg from the result to get the final dosage: 248 mg - 20 mg = 228 mg. Therefore, the patient's final dosage is 228 mg. Choice A (20 mg) is incorrect because it only considers the second reduction of 20 mg and misses the initial reduction by 1/5. Choice B (42 mg) is incorrect as it miscalculates the reduction amounts. Choice D (248 mg) is incorrect as it does not account for the second reduction of 20 mg.
5. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?
- A. 2
- B. 3
- C. 4
- D. 5
Correct answer: C
Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access