simplify the expression which of the following is the value of x 54x 5 322x 6
Logo

Nursing Elites

ATI TEAS 7

TEAS Exam Math Practice

1. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))

Correct answer: C

Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.

2. Which of the following is the correct solution to the equation 3x + 4 = 19?

Correct answer: C

Rationale: To solve the equation 3x + 4 = 19, first, subtract 4 from both sides to isolate the term with x, which gives 3x = 15. Then, divide both sides by 3 to solve for x, resulting in x = 5. Therefore, the correct answer is x = 5. Choice A, x = 3, is incorrect as it does not satisfy the equation. Choice B, x = 4, is also incorrect as it does not make the equation true. Choice D, x = 6, is incorrect as it does not align with the correct solution obtained through the proper algebraic steps.

3. The phone bill is calculated each month using the equation y = 50x. The cost of the phone bill per month is represented by y and x represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?

Correct answer: D

Rationale: The slope of the equation y = 50x is 50, which means that for each additional gigabyte of data used, the cost increases by 50 dollars. Therefore, the interpretation of the slope is that it represents the cost per gigabyte, making '50 dollars per gigabyte' the correct answer. Choices A, B, and C are incorrect because they do not reflect the relationship between the cost and the amount of data used in the given equation.

4. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?

Correct answer: D

Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.

5. Jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds. Jerry weighs 200 pounds. What would be the average weight of each item so that the elevator's weight limit is not exceeded?

Correct answer: B

Rationale: To find the average weight per item, subtract Jerry's weight from the elevator's weight limit: 800 - 200 = 600 pounds. Since there are 4 items, divide 600 by 4 to determine that each item should weigh 150 pounds. Choice A (128 pounds), C (175 pounds), and D (180 pounds) are incorrect as they do not correctly calculate the average weight per item to ensure the elevator's weight limit is not exceeded.

Similar Questions

Which of the following weights is equivalent to 3.193 kilograms?
In a fraction, which number is the numerator and which is the denominator?
Simplify the following expression: 5/9 × 15/36
If 3/4 of students at a university major in nursing and 1/3 of those students complete the program, how many will complete the program if 100 students are in the incoming class?
How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses