ATI TEAS 7
TEAS Test Math Questions
1. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2𝑥 + 3𝑥 - 5, follow these steps: Identify and combine like terms. The terms 2𝑥 and 3𝑥 are both 'like terms' because they both contain the variable 𝑥. Add the coefficients of the like terms: 2𝑥 + 3𝑥 = 5𝑥. Simplify the expression. After combining the like terms, the expression becomes 5𝑥 - 5, which includes the simplified term 5𝑥 and the constant -5. Thus, the fully simplified expression is 5𝑥 - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
2. A patient requires a 30% decrease in the dosage of their medication. Their current dosage is 340 mg. What will their dosage be after the decrease?
- A. 70 mg
- B. 238 mg
- C. 270 mg
- D. 340 mg
Correct answer: B
Rationale: To calculate a 30% decrease in 340 mg, you multiply 340 by 0.3, which equals 102 mg. Subtracting this from the current dosage gives 340 - 102 = 238 mg. Therefore, the correct answer is 238 mg. Choice A (70 mg) is incorrect because it represents a 70% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect the correct calculation for a 30% decrease. Choice D (340 mg) is the initial dosage and not the reduced dosage after a 30% decrease.
3. Melissa is ordering fencing to enclose a square area of 5625 square feet. How many feet of fencing does she need?
- A. 75 feet
- B. 150 feet
- C. 300 feet
- D. 5,625 feet
Correct answer: C
Rationale: To find the side length of the square, we take the square root of the area: √5625 ft² = 75 ft. The perimeter of a square is 4 times its side length, so the fencing needed is 4 × 75 ft = 300 ft. Therefore, Melissa needs 300 feet of fencing to enclose the square area of 5625 square feet. Option A (75 feet) is the side length of the square, not the fencing needed. Option B (150 feet) is half of the correct answer and does not account for all sides of the square. Option D (5,625 feet) is the total area, not the length of fencing required.
4. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of those 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: C
Rationale: Out of all the patients who took the antibiotic, 30% developed an infection. Among those with infections, 5% required hospitalization. To find the percentage of all patients hospitalized, we multiply the two percentages: 30% * 5% = 1.5%. Therefore, 1.5% of all patients were hospitalized. Choice A (1.50%) is the calculated percentage of all patients hospitalized, not 1.50%. Choice B (5%) is the percentage of patients who developed an infection and required hospitalization, not all patients. Choice D (30%) represents the initial percentage of patients who developed an infection, not the percentage hospitalized.
5. Solve for x: x + 5 = x - 3.
- A. x = -5
- B. x = 5
- C. x = -3
- D. x = 3
Correct answer: A
Rationale: To solve the equation x + 5 = x - 3, we aim to isolate x. By subtracting x from both sides, we get 5 = -3, which is not possible. This indicates that the equation has no solution. Therefore, the correct answer is x = -5. Choices B, C, and D are incorrect as they do not yield a valid solution when substituted back into the original equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access