ATI TEAS 7
TEAS Test Math Questions
1. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2𝑥 + 3𝑥 - 5, follow these steps: Identify and combine like terms. The terms 2𝑥 and 3𝑥 are both 'like terms' because they both contain the variable 𝑥. Add the coefficients of the like terms: 2𝑥 + 3𝑥 = 5𝑥. Simplify the expression. After combining the like terms, the expression becomes 5𝑥 - 5, which includes the simplified term 5𝑥 and the constant -5. Thus, the fully simplified expression is 5𝑥 - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
2. During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
- A. shifts = 20 + 3 + 1/2
- B. shifts = (20)(3)(1/2)
- C. shifts = (20)(3) + 1/2
- D. shifts = 20 + (3)(1/2)
Correct answer: B
Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.
3. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
4. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
5. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized after taking the antibiotic, we need to calculate 30% of 5%. First, convert 30% and 5% to decimals: 30% = 0.30 and 5% = 0.05. Multiply 0.30 by 0.05 to get 0.015. To convert 0.015 to a percentage, multiply by 100, resulting in 1.5%. Therefore, only 1.50% of Dr. Lee's patients were hospitalized after taking the antibiotic. Choice A is correct. Choice B (5%) is incorrect as it represents the percentage of patients who developed an infection and not those hospitalized. Choices C (15%) and D (30%) are also incorrect percentages as they do not accurately reflect the proportion of hospitalized patients in this scenario.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access