shawna buys gallons of paint if she uses of it on the first day how much does she have left
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Sample Math Questions

1. Shawna buys 5.0 gallons of paint. If she uses 2.5 gallons of it on the first day, how much does she have left?

Correct answer: B

Rationale: To find the remaining paint, subtract the amount used from the total gallons bought. 5.0 - 2.5 = 2.5 gallons. Therefore, Shawna has 2.5 gallons of paint left after using 2.5 gallons on the first day. Choices A, C, and D are incorrect because they do not accurately represent the amount of paint left after using 2.5 gallons.

2. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?

Correct answer: C

Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.

3. Gordon purchased a television that was 30% off its original price of $472. What was the sale price?

Correct answer: D

Rationale: To find the sale price after a 30% discount, you first calculate the discount amount which is 30% of $472. 30% of $472 is $141.60. To find the sale price, you subtract the discount amount from the original price: $472 - $141.60 = $330.40. Therefore, the sale price of the television after a 30% discount would be $330.40. Choices A, B, and C are incorrect as they do not accurately reflect the calculated sale price after the discount.

4. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?

Correct answer: B

Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.

5. Susan decided to celebrate getting her first nursing job by purchasing a new outfit. She bought a dress for $69.99, shoes for $39.99, and accessories for $34.67. What was the total cost of Susan’s outfit?

Correct answer: D

Rationale: To find the total cost of Susan's outfit, you need to add the prices of the dress, shoes, and accessories. $69.99 (dress) + $39.99 (shoes) + $34.67 (accessories) = $144.65. Therefore, the correct answer is $144.65. Option A ($69.99) is incorrect as it only represents the price of the dress. Option B ($75.31) is incorrect as it does not account for the total cost. Option C ($109.98) is incorrect as it does not include the individual prices of all items purchased.

Similar Questions

Simplify the following expression: (2/7) ÷ (5/6)
If x represents the width of a rectangle and the length is six less than two times the width, which of the following expressions represents the length of the rectangle in terms of x?
While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
What defines a proper fraction versus an improper fraction?
If a car travels 150 miles in 3 hours, what is the car's average speed in miles per hour?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses