ATI TEAS 7
TEAS Math Questions
1. If you pull an orange block from a bag of 3 orange, 5 green, and 4 purple blocks, what is the probability of consecutively pulling two more orange blocks without replacement?
- A. 1/12
- B. 3/55
- C. 1/55
- D. 2/33
Correct answer: B
Rationale: To calculate the probability of pulling two more orange blocks consecutively without replacement after the initial orange block is pulled, we need to multiply the probabilities. After the first orange block is pulled, there are 2 orange blocks left out of a total of 11 blocks remaining. So, the probability of pulling a second orange block is 2/11. Therefore, the overall probability is (3/12) * (2/11) = 3/55. Choice A (1/12) is incorrect because it only considers the probability of the first orange block being pulled. Choice C (1/55) is incorrect as it represents the probability of pulling two orange blocks in a row, not the consecutive pulls after the initial pull. Choice D (2/33) is incorrect as it does not reflect the correct calculation for the consecutive pulls of orange blocks.
2. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
3. In a graph that shows the number of nurses in various specialties, what is the independent variable?
- A. Anesthesia
- B. Geriatrics
- C. Nurse specialties
- D. Number of nurses
Correct answer: C
Rationale: The independent variable is the variable that is controlled or manipulated in an experiment or study. In this case, the independent variable is the nurse specialties because it is the factor that is being observed and measured to see how it affects the number of nurses in each specialty. The dependent variable, which changes in response to the independent variable, is the number of nurses. Choices A and B are specific nurse specialties and are actually part of the data being measured, not the independent variable itself. Choice D, 'Number of nurses,' is the dependent variable as it is the outcome that is being influenced by the independent variable, which is the nurse specialties.
4. 4 − 1/(22) + 24 ÷ (8 + 12). Simplify the expression. Which of the following is correct?
- A. 1.39
- B. 2.74
- C. 4.95
- D. 15.28
Correct answer: C
Rationale: First, complete the operations in parentheses: 4 − (1/22) + 24 ÷ 20. Next, simplify the exponents: 4 − (1/22) + 24 ÷ 20 = 4 − (1/4) + 24 ÷ 20. Then, complete multiplication and division operations: 4 − (1/4) + 24 ÷ 20 = 4 − 0.25 + 1.2. Finally, complete addition and subtraction operations: 4 − 0.25 + 1.2 = 4.95. Choice A, 1.39, is incorrect as it does not match the correct calculation. Choice B, 2.74, is incorrect as it is not the result of the given expression. Choice D, 15.28, is incorrect as it is not the correct simplification of the initial expression.
5. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access