at a car dealership employees earn a monthly base salary of 2000 plus 3 commission on total sales if an employee makes 5000 in sales what will their t
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. At a car dealership, employees earn a monthly base salary of $2,000 plus 3% commission on total sales. If an employee makes $5,000 in sales, what will their total monthly earnings be?

Correct answer: A

Rationale: To calculate the total monthly earnings, we first find the commission earned on $5,000 sales, which is 3% of $5,000 = $150. Adding this commission to the $2,000 base salary gives a total of $2,000 + $150 = $2,150. Therefore, the correct total monthly earnings are $2,500. Choice B ($2,150) is incorrect because it only includes the base salary and the commission but miscalculates the total. Choices C ($2,100) and D ($2,300) are also incorrect as they do not account for the correct calculation of the commission on sales.

2. Which of the following is the correct solution to the equation 3x + 4 = 19?

Correct answer: C

Rationale: To solve the equation 3x + 4 = 19, first, subtract 4 from both sides to isolate the term with x, which gives 3x = 15. Then, divide both sides by 3 to solve for x, resulting in x = 5. Therefore, the correct answer is x = 5. Choice A, x = 3, is incorrect as it does not satisfy the equation. Choice B, x = 4, is also incorrect as it does not make the equation true. Choice D, x = 6, is incorrect as it does not align with the correct solution obtained through the proper algebraic steps.

3. If 𝑛 = 8, then n is between which of the following ranges?

Correct answer: B

Rationale: To find the range where n lies when n = 8, we consider numbers greater and lesser than 8. The range would be between 7 and 9, not 9 and 11 as stated in the original rationale. Option A (5 and 7) and Option D (3 and 5) are lower ranges, while Option C (9 and 11) exceeds the upper limit.

4. What number is 6 equal to 30% of?

Correct answer: A

Rationale: To find the number that is 30% of 6, you can set up the equation 0.3x = 6. Solving for x gives x = 6 / 0.3 = 20. Therefore, 6 is equal to 30% of 20. Choice B, 20, is incorrect as it is the result of the calculation. Choice C, 24, and Choice D, 26, are incorrect as they are not the numbers that 6 is equal to 30% of.

5. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36

Correct answer: C

Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.

Similar Questions

How do you convert pounds to kg and kg to pounds?
Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
Which of the following is the correct decimal placement for the product of 1.6 * 0.93?
Simplify the following expression: 13 - 3/22 - 11
What is the GCF (greatest common factor)?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses