ATI TEAS 7
ATI TEAS Math Practice Test
1. If Hannah spends at least $16 on 4 packages of coffee, which of the following inequalities represents the possible costs?
- A. 16 ≥ 4p
- B. 16 < 4p
- C. 16 > 4p
- D. 16 ≤ 4p
Correct answer: D
Rationale: To represent the relationship between the number of packages of coffee and the minimum cost, the inequality can be written as 4p ≥ 16 (cost is at least $16). This inequality can also be expressed as 16 ≤ 4p, which reads as the cost being less than or equal to $16. Therefore, the correct answer is D. Choice A (16 ≥ 4p) implies that the cost can be greater than or equal to $16, which does not align with the statement that Hannah spends at least $16. Choice B (16 < 4p) suggests that the cost is less than $16, which contradicts the given information. Choice C (16 > 4p) indicates that the cost is greater than $16, which is not accurate based on the scenario provided.
2. A consumer recently purchased a new car and paid $48,000. This amount is $2,000 less than twice what the consumer’s friend paid for their car. Which of the following is the amount that the friend paid for their car?
- A. $23,000
- B. $46,000
- C. $25,000
- D. $50,000
Correct answer: C
Rationale: To find the amount the friend paid, you can set up the equation 2x - 2000 = 48000, where x represents the amount the friend paid. Solving this equation gives x = $25,000. Therefore, the friend paid $25,000. Choice A ($23,000) is incorrect because it does not account for the $2,000 difference mentioned in the question. Choice B ($46,000) is incorrect because it is double the amount needed. Choice D ($50,000) is incorrect as it does not consider the $2,000 less mentioned in the question.
3. 3(x-2)=12. Solve the equation above for x. Which of the following is the correct answer?
- A. 6
- B. -2
- C. -4
- D. 2
Correct answer: A
Rationale: To solve the equation 3(x-2)=12, first distribute the 3: 3x - 6 = 12. Next, isolate x by adding 6 to both sides: 3x = 18. Finally, divide by 3 to find x: x = 6. Therefore, the correct answer is A (6). Choice B (-2) is incorrect as it does not satisfy the equation. Choice C (-4) is also incorrect as it does not satisfy the equation. Choice D (2) is incorrect as it does not satisfy the equation either.
4. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
5. What is the result of (4.71 × 10^3) - (2.98 × 10^2)? Which of the following is the correct simplified expression?
- A. 1.73 × 10
- B. 4.412 × 10^2
- C. 1.73 × 10^3
- D. 4.412 × 10^3
Correct answer: D
Rationale: The correct answer is D: 4.412 × 10^3. To simplify the expression, rewrite 4.71 × 10^3 as 47.1 × 10^2. Subtract the values in front of 10^2: 47.1 - 2.98 = 44.12. Rewriting this gives 44.12 × 10^2 = 4.412 × 10^3. Choice A is incorrect as it does not account for the correct subtraction result. Choice B is incorrect as it does not correctly simplify the expression. Choice C is incorrect as it provides an incorrect power of 10 in the simplified expression.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access