ATI TEAS 7
TEAS Math Practice Test
1. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
2. A study about anorexia was conducted on 100 patients. 70% were women, and 10% of the men were overweight as children. How many male patients were not overweight as children?
- A. 3
- B. 10
- C. 27
- D. 30
Correct answer: C
Rationale: Out of the 100 patients, 30% were men, which equals 30 male patients. It is given that 10% of the men were overweight as children, so 10% of 30 is 3, meaning 3 male patients were overweight. Therefore, the remaining 27 male patients were not overweight as children. Choice A, B, and D are incorrect as they do not accurately represent the number of male patients who were not overweight.
3. How do you find the least common multiple?
- A. List all multiples of the numbers, then find the smallest common one
- B. List all factors of the numbers, then find the largest common one
- C. Divide the largest number by the smallest
- D. Multiply the two numbers together
Correct answer: A
Rationale: The correct way to find the least common multiple is to list all the multiples of each number and then identify the smallest common multiple. Choice A is correct because it describes the correct process. Listing factors, as suggested in choice B, helps in finding the greatest common factor, not the least common multiple. Dividing the largest number by the smallest, as mentioned in choice C, does not help find the least common multiple. Multiplying the two numbers together, as stated in choice D, results in their least common multiple when the numbers have no common factors.
4. How can you distinguish between these three types of graphs - scatterplots: Quadratic, Exponential, Linear?
- A. Linear: straight line; Quadratic: U-shape; Exponential: rises or falls quickly in one direction
- B. Linear: curved line; Quadratic: straight line; Exponential: horizontal line
- C. Linear: zigzag line; Quadratic: U-shape; Exponential: flat line
- D. Linear: straight line; Quadratic: W-shape; Exponential: vertical line
Correct answer: A
Rationale: To differentiate between the three types of graphs - scatterplots, a linear graph will display a straight line, a quadratic graph will have a U-shape, and an exponential graph will show a rapid rise or fall in one direction. Choice B is incorrect because linear graphs are represented by straight lines, not curved lines. Choice C is incorrect as linear graphs do not exhibit zigzag patterns, and exponential graphs do not typically result in flat lines. Choice D is incorrect because quadratic graphs form a U-shape, not a W-shape, and exponential graphs do not represent vertical lines.
5. Solve the inequality for the unknown.
- A. x > 5
- B. x < 5
- C. x >= 5
- D. x <= 5
Correct answer: A
Rationale: When solving an inequality, the direction of the inequality sign changes depending on the operation performed. In this case, if the given inequality simplifies to x > 5, it means that the unknown value x must be greater than 5 for the inequality to hold true. Therefore, x > 5 is the correct solution. Option A is correct. Choices B, C, and D are incorrect because they do not correctly represent the relationship between x and 5 based on the given inequality.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access