ATI TEAS 7
TEAS Math Practice Test
1. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
2. What is a common denominator?
- A. A shared multiple of two denominators
- B. A shared factor of two numerators
- C. A number that is the same in all fractions
- D. A number that divides evenly into both fractions
Correct answer: A
Rationale: A common denominator is a shared multiple of the denominators in a set of fractions. It is necessary when adding or subtracting fractions to have a common denominator to ensure that the fractions can be combined accurately. Choice B is incorrect because the common denominator is related to the denominators, not the numerators. Choice C is incorrect because while the common denominator is the same in all fractions being added or subtracted, it is not necessarily a number that is the same in all fractions. Choice D is incorrect because a common denominator is a multiple of the denominators, not a number that divides evenly into both fractions.
3. The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
- A. 5 inches, 12 inches
- B. 2.5 inches, 6 inches
- C. 2.5 inches, 4 inches
- D. 5 inches, 8 inches
Correct answer: A
Rationale: The correct answer is A. Using the Pythagorean theorem (A² + B² = C²), we substitute the values: 5² + 12² = 13². This simplifies to 25 + 144 = 169, which is true. Therefore, 5 inches and 12 inches could be the lengths of the other two sides. Choices B, C, and D do not satisfy the Pythagorean theorem, making them incorrect options.
4. What is the mode of the set of numbers {4, 4, 5, 7, 8}?
- A. 4
- B. 5
- C. 7
- D. 8
Correct answer: A
Rationale: The mode of a set of numbers is the value that appears most frequently. In the given set {4, 4, 5, 7, 8}, the number 4 appears twice, which is more frequent than any other number. Therefore, the mode of this set is 4. Choice B, 5, is incorrect as it only appears once in the set. Choices C and D, 7 and 8 respectively, also appear only once each, making them less frequent than the number 4.
5. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access