ATI TEAS 7
TEAS Math Practice Test
1. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
2. If Sarah reads at an average rate of 21 pages in four nights, how long will it take her to read 140 pages?
- A. 6 nights
- B. 26 nights
- C. 8 nights
- D. 27 nights
Correct answer: D
Rationale: If Sarah reads 21 pages in four nights, she reads at a rate of 21 / 4 = 5.25 pages per night. To read 140 pages, she would need 140 / 5.25 = 26.67 nights. Since she cannot read a fraction of a night, it would take her 27 nights to read 140 pages, making option D the correct answer. Option A is incorrect as it does not accurately reflect the calculation. Option B is incorrect as it does not consider the fractional part of the calculation, resulting in an inaccurate answer. Option C is incorrect as it does not align with the correct calculation based on Sarah's reading rate.
3. What is 31% of 426?
- A. 425.69
- B. 132.06
- C. 13.7
- D. 0.07
Correct answer: B
Rationale: To find 31% of 426, multiply 0.31 by 426. This gives 0.31 × 426 = 132.06. Therefore, choice B, 132.06, is the correct answer. Choice A, 425.69, is close to the original number but is not the correct answer for the percentage calculation. Choice C, 13.7, is not the correct result for 31% of 426. Choice D, 0.07, is significantly lower than the correct answer and does not represent 31% of 426.
4. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
5. A car travels 60 miles in 1 hour. How long will it take to travel 180 miles at the same speed?
- A. 3 hours
- B. 4 hours
- C. 2.5 hours
- D. 5 hours
Correct answer: A
Rationale: To find the time needed to travel 180 miles at the same speed of 60 miles per hour, you divide the total distance by the speed. 180 miles ÷ 60 mph = 3 hours. Therefore, it will take 3 hours to travel 180 miles at the given speed. Choice B, 4 hours, is incorrect as it does not align with the calculation. Choice C, 2.5 hours, is incorrect as it underestimates the time needed for the distance. Choice D, 5 hours, is incorrect as it overestimates the time required based on the given speed.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access