ATI TEAS 7
TEAS Practice Test Math
1. An athlete runs 5 miles in 25 minutes and then changes pace to run the next 3 miles in 15 minutes. Overall, what is the average time in minutes it takes the athlete to run 1 mile?
- A. 7 minutes
- B. 5 minutes
- C. 6.5 minutes
- D. 8.5 minutes
Correct answer: B
Rationale: To find the average time per mile, add the total time taken to cover all miles and then divide by the total miles run. The athlete ran 5 miles in 25 minutes and 3 miles in 15 minutes, totaling 8 miles in 40 minutes. Therefore, the average time per mile is 40 minutes ÷ 8 miles = 5 minutes. Choice A, 7 minutes, is incorrect as it does not reflect the correct average time per mile. Choice C, 6.5 minutes, is incorrect since the calculation is not based on the given information. Choice D, 8.5 minutes, is incorrect as it does not represent the average time per mile for the entire run.
2. Which of the following percentages is equivalent to 5 ¼?
- A. 525%
- B. 514%
- C. 5.25%
- D. 5.14%
Correct answer: A
Rationale: To convert a mixed number to a decimal, 5 ¼ becomes 5.25. To convert this decimal to a percentage, you multiply it by 100. Therefore, 5.25 × 100 = 525%. Choice A is correct. Choice B (514%) is incorrect as it does not match the equivalent of 5 ¼. Choice C (5.25%) is the decimal equivalent of 5 ¼, not the percentage. Choice D (5.14%) is a different value and does not represent the percentage equivalent of 5 ¼.
3. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
4. A dry cleaner charges $3 per shirt, $6 per pair of pants, and an extra $5 per item for mending. Annie drops off 5 shirts and 4 pairs of pants, 2 of which need mending. Assuming the cleaner charges an 8% sales tax, what will be the amount of Annie’s total bill?
- A. $45.08
- B. $49.00
- C. $52.92
- D. $88.20
Correct answer: C
Rationale: To determine the total cost before tax, calculate: 5 shirts × $3/shirt + 4 pants × $6/pair of pants + 2 items mended × $5/item mended = $49. Now, multiply this amount by 1.08 to include the 8% sales tax: $49 × 1.08 = $52.92. Therefore, Annie's total bill will be $52.92. Choice A, $45.08, is incorrect as it does not include the correct calculation for the total bill. Choice B, $49.00, is wrong because it is the total cost before tax and does not consider the added sales tax. Choice D, $88.20, is incorrect as it does not accurately calculate the total bill including the sales tax.
5. How can you distinguish between these three types of graphs - scatterplots: Quadratic, Exponential, Linear?
- A. Linear: straight line; Quadratic: U-shape; Exponential: rises or falls quickly in one direction
- B. Linear: curved line; Quadratic: straight line; Exponential: horizontal line
- C. Linear: zigzag line; Quadratic: U-shape; Exponential: flat line
- D. Linear: straight line; Quadratic: W-shape; Exponential: vertical line
Correct answer: A
Rationale: To differentiate between the three types of graphs - scatterplots, a linear graph will display a straight line, a quadratic graph will have a U-shape, and an exponential graph will show a rapid rise or fall in one direction. Choice B is incorrect because linear graphs are represented by straight lines, not curved lines. Choice C is incorrect as linear graphs do not exhibit zigzag patterns, and exponential graphs do not typically result in flat lines. Choice D is incorrect because quadratic graphs form a U-shape, not a W-shape, and exponential graphs do not represent vertical lines.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access