ATI TEAS 7
TEAS Practice Test Math
1. A gumball machine contains red, orange, yellow, green, and blue gumballs. Twenty percent of the gumballs are red, 30% are orange, 5% are yellow, 10% are green, and the rest are blue. If there are a total of 120 gumballs, how many more blue gumballs are there than yellow gumballs?
- A. 48
- B. 30
- C. 42
- D. 36
Correct answer: D
Rationale: The percentage of blue gumballs is 35% (100% - 20% - 30% - 5% - 10% = 35%). If there are 120 gumballs, 35% of that is 42 blue gumballs. Since 5% are yellow gumballs, which is 6 gumballs, the difference between 42 blue gumballs and 6 yellow gumballs is 36 more blue gumballs. Therefore, the correct answer is 36. Choice A (48) is incorrect as it miscalculates the difference. Choice B (30) is incorrect as it does not consider the correct percentage of blue gumballs. Choice C (42) is incorrect as it miscalculates the difference between blue and yellow gumballs.
2. At the beginning of the day, Xavier has 20 apples. At lunch, he meets his sister Emma and gives her half of his apples. After lunch, he stops by his neighbor Jim's house and gives him 6 of his apples. He then uses 3/4 of his remaining apples to make an apple pie for dessert at dinner. At the end of the day, how many apples does Xavier have left?
- A. 4
- B. 6
- C. 2
- D. 1
Correct answer: D
Rationale: Xavier gives away half of his 20 apples (10), then gives 6 more apples, leaving him with 4 apples. He uses 3/4 of the remaining 4 apples (3) for the pie, leaving him with 1 apple at the end of the day. Therefore, the correct answer is 1. Choices A, B, and C are incorrect because they do not accurately reflect the calculations of apples given away and used for the pie, resulting in the remaining amount of 1 apple.
3. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
4. What is the result of (4.71 × 10^3) - (2.98 × 10^2)? Which of the following is the correct simplified expression?
- A. 1.73 × 10
- B. 4.412 × 10^2
- C. 1.73 × 10^3
- D. 4.412 × 10^3
Correct answer: D
Rationale: The correct answer is D: 4.412 × 10^3. To simplify the expression, rewrite 4.71 × 10^3 as 47.1 × 10^2. Subtract the values in front of 10^2: 47.1 - 2.98 = 44.12. Rewriting this gives 44.12 × 10^2 = 4.412 × 10^3. Choice A is incorrect as it does not account for the correct subtraction result. Choice B is incorrect as it does not correctly simplify the expression. Choice C is incorrect as it provides an incorrect power of 10 in the simplified expression.
5. Approximately by what percentage are there more female staff members in City Y compared to City X?
- A. 5%
- B. 10%
- C. 15%
- D. 20%
Correct answer: D
Rationale: To find the percentage difference in female staff members between City Y and City X, you subtract the percentage of female staff members in City X from the percentage in City Y. So, 60% (City Y) - 40% (City X) = 20%. This means there are 20% more female staff members in City Y compared to City X. Choices A, B, and C are incorrect percentages and do not accurately represent the 20% difference between the two cities.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access