ATI TEAS 7
Practice Math TEAS TEST
1. A couple dining at a restaurant receives a bill for $28.40. They wish to leave a 10% tip. Which of the following is the estimated gratuity?
- A. $4.00
- B. $6.00
- C. $2.50
- D. $3.00
Correct answer: D
Rationale: To calculate a 10% tip on a bill of $28.40, you would first find 10% of $28.40, which is $2.84. Since you typically round up when leaving a tip, the estimated gratuity would be $3.00. Option A is incorrect as it is too high for a 10% tip. Option B is incorrect as it is too high. Option C is incorrect as it is too low for a 10% tip. Therefore, the correct answer is $3.00.
2. What is the result of adding 1/6 and 1/2, expressed in reduced form?
- A. 9/7
- B. 1/3
- C. 31/36
- D. 3/5
Correct answer: B
Rationale: To add 1/6 and 1/2, you need a common denominator, which is 6. So, 1/6 + 3/6 = 4/6. Simplifying 4/6 gives 2/3, which is the correct answer (1/3). Choices A, C, and D are incorrect as they do not represent the correct sum of the fractions 1/6 and 1/2.
3. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
4. What is the median of the set of numbers {2, 3, 9, 12, 15}?
- A. 3
- B. 9
- C. 12
- D. 15
Correct answer: B
Rationale: The median represents the middle value in an ordered set of numbers. To find the median, the numbers need to be arranged in ascending order: {2, 3, 9, 12, 15}. Since the set has an odd number of elements, the median will be the middle value, which is 9 in this case. Choice A (3) and Choice D (15) are incorrect as they do not fall in the middle of the ordered set. Choice C (12) is also incorrect as it is not the middle value in this particular set.
5. The number of vacuum cleaners sold by a company per month during Year 1 is listed below: 18, 42, 29, 40, 24, 17, 29, 44, 19, 33, 46, 39. Which of the following is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: D
Rationale: The mean number of vacuum cleaners sold per month is 31.7, the mode is 29, the median is 31, and the range is 29. The mode being equal to the range is the correct statement. Option A is incorrect because the mean (31.7) is greater than the median (31). Option B is incorrect as the mode (29) is not greater than the median (31). Option C is incorrect since the mode (29) is not less than the mean, median, or range.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access