ATI TEAS 7
TEAS Practice Test Math
1. 3(x-2)=12. Solve the equation above for x. Which of the following is the correct answer?
- A. 6
- B. -2
- C. -4
- D. 2
Correct answer: A
Rationale: To solve the equation 3(x-2)=12, first distribute the 3: 3x - 6 = 12. Next, isolate x by adding 6 to both sides: 3x = 18. Finally, divide by 3 to find x: x = 6. Therefore, the correct answer is A (6). Choice B (-2) is incorrect as it does not satisfy the equation. Choice C (-4) is also incorrect as it does not satisfy the equation. Choice D (2) is incorrect as it does not satisfy the equation either.
2. Solve for x: 3(x - 5) = 2(x + 3)
- A. x = 3
- B. x = 6
- C. x = 9
- D. x = 12
Correct answer: A
Rationale: To solve the equation 3(x - 5) = 2(x + 3) for x, start by distributing the terms inside the parentheses. This gives you 3x - 15 = 2x + 6. Next, combine like terms by moving all terms with x to one side and the constants to the other side. Subtracting 2x from both sides gives x - 15 = 6. Finally, adding 15 to both sides results in x = 21. Therefore, the correct answer is A: x = 3. Choices B, C, and D are incorrect as they do not result from the correct calculations of the equation.
3. What is a common denominator?
- A. A shared multiple of two denominators
- B. A shared factor of two numerators
- C. A number that is the same in all fractions
- D. A number that divides evenly into both fractions
Correct answer: A
Rationale: A common denominator is a shared multiple of the denominators in a set of fractions. It is necessary when adding or subtracting fractions to have a common denominator to ensure that the fractions can be combined accurately. Choice B is incorrect because the common denominator is related to the denominators, not the numerators. Choice C is incorrect because while the common denominator is the same in all fractions being added or subtracted, it is not necessarily a number that is the same in all fractions. Choice D is incorrect because a common denominator is a multiple of the denominators, not a number that divides evenly into both fractions.
4. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
5. Which of the following expressions represents the sum of three times a number and eight times a different number?
- A. 3x + 8y
- B. 8x + 3x
- C. 3x - 8y
- D. 8x - 3y
Correct answer: A
Rationale: The correct expression for the sum of three times a number and eight times a different number is given by 3x + 8y. This represents adding three times the variable x (3x) to eight times the variable y (8y). Choice B (8x + 3x) is incorrect as it represents adding eight times x to three times x, which is redundant. Choice C (3x - 8y) is incorrect because it represents subtracting eight times y from three times x, not their sum. Choice D (8x - 3y) is also incorrect as it represents subtracting three times y from eight times x, not their sum.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access