ATI TEAS 7
TEAS 7 Math Practice Test
1. Simplify the following expression: 1.034 + 0.275 - 1.294
- A. 0.015
- B. 0.15
- C. 1.5
- D. -0.15
Correct answer: A
Rationale: To simplify the expression, begin by adding 1.034 and 0.275, which equals 1.309. Then, subtract 1.294 from the sum: 1.309 - 1.294 = 0.015. Therefore, the correct answer is 0.015. Choice B (0.15) is incorrect as it does not reflect the accurate calculation. Choice C (1.5) is incorrect as it is not the correct result of the expression simplification. Choice D (-0.15) is incorrect as it represents a different value than the correct outcome of the expression simplification.
2. Given a double bar graph, which statement is true about the distributions of Group A and Group B?
- A. Group A is negatively skewed, Group B is normal.
- B. Group A is positively skewed, Group B is normal.
- C. Group A is positively skewed, Group B is neutral.
- D. Group A is normal, Group B is negatively skewed.
Correct answer: B
Rationale: The correct answer is B. In statistical terms, a positively skewed distribution means that the tail on the right side of the distribution is longer or fatter than the left side, indicating more high values. Therefore, Group A is positively skewed. Conversely, an approximately normal distribution, also known as a bell curve, is symmetrical with no skewness. Hence, Group B is normal. Choices A, C, and D are incorrect because they do not accurately describe the skewness of Group A and the normal distribution of Group B as depicted in a double bar graph.
3. Kyle has $950 in savings and wishes to donate one-fifth of it to 8 local charities. He estimates that he will donate around $30 to each charity. Which of the following correctly describes the reasonableness of his estimate?
- A. It is reasonable because $190 is one-fifth of $950
- B. It is reasonable because $190 is less than one-fifth of $1,000
- C. It is not reasonable because $240 is more than one-fifth of $1,000
- D. It is not reasonable because $240 is one-fifth of $1,000
Correct answer: C
Rationale: Kyle initially had $950 in savings, and one-fifth of that amount would be $190. Since he wishes to donate around $30 to each charity, the total amount he would donate to 8 local charities would be $30 x 8 = $240. This amount is more than one-fifth of $1,000, making the estimate not reasonable. Choice A is incorrect because $190 is the correct one-fifth of $950, not $900. Choice B is incorrect as it compares $190 to a different amount ($1,000) rather than the actual total. Choice D is incorrect as it states that $240 is one-fifth of $1,000, which is inaccurate.
4. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
5. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access