ATI TEAS 7
ATI TEAS Math Practice Test
1. Arrange the following numbers from least to greatest: 7/3, 9/2, 10/9, 7/8
- A. 10/9, 7/3, 9/2, 7/8
- B. 9/2, 7/3, 10/9, 7/8
- C. 7/3, 9/2, 10/9, 7/8
- D. 7/8, 10/9, 7/3, 9/2
Correct answer: D
Rationale: To arrange the numbers from least to greatest, first convert them to decimals: 1. 7/3 is approximately 2.33 2. 9/2 equals 4.5 3. 10/9 is approximately 1.11 4. 7/8 equals 0.875 Now, arrange the decimals from least to greatest: 0.875 (7/8), 1.11 (10/9), 2.33 (7/3), 4.5 (9/2). Therefore, the correct order is 7/8, 10/9, 7/3, 9/2. Choice A is incorrect because it doesn't follow the correct order. Choice B is incorrect as it places 9/2 before 7/3, which is not the right arrangement. Choice C is incorrect as it places 7/3 before 9/2 and 10/9, which is incorrect. Thus, the correct answer is choice D.
2. A gumball machine contains red, orange, yellow, green, and blue gumballs. Twenty percent of the gumballs are red, 30% are orange, 5% are yellow, 10% are green, and the rest are blue. If there are a total of 120 gumballs, how many more blue gumballs are there than yellow gumballs?
- A. 48
- B. 30
- C. 42
- D. 36
Correct answer: D
Rationale: The percentage of blue gumballs is 35% (100% - 20% - 30% - 5% - 10% = 35%). If there are 120 gumballs, 35% of that is 42 blue gumballs. Since 5% are yellow gumballs, which is 6 gumballs, the difference between 42 blue gumballs and 6 yellow gumballs is 36 more blue gumballs. Therefore, the correct answer is 36. Choice A (48) is incorrect as it miscalculates the difference. Choice B (30) is incorrect as it does not consider the correct percentage of blue gumballs. Choice C (42) is incorrect as it miscalculates the difference between blue and yellow gumballs.
3. A recipe calls for 0.375 cups of sugar, but you only want to make 0.625 of the recipe. How much sugar should you use?
- A. 1.125 cups
- B. 1.111 cups
- C. 0.6 cups
- D. 2.4 cups
Correct answer: C
Rationale: To find out how much sugar should be used when making 0.625 of the recipe, you need to multiply 0.375 (amount required for the full recipe) by 0.625 (proportion of the recipe you want to make). 0.375 * 0.625 = 0.234375. Therefore, you should use 0.234375 cups of sugar, which is equivalent to 0.6 cups. This is the correct answer. Choices A, B, and D are incorrect because they do not correctly calculate the adjusted amount of sugar needed based on the proportion of the recipe being made.
4. Bridget is repainting her rectangular bedroom. Two walls measure 15 feet by 9 feet, and the other two measure 12.5 feet by 9 feet. One gallon of paint covers an average of 32 square meters. Which of the following is the number of gallons of paint that Bridget will use? (There are 3.28 feet in 1 meter.)
- A. 0.72 gallons
- B. 1.43 gallons
- C. 4.72 gallons
- D. 15.5 gallons
Correct answer: B
Rationale: First, convert the dimensions to meters: 15 ft. × (1 m/3.28 ft.) = 4.57 m; 9 ft. × (1 m/3.28 ft.) = 2.74 m; 12.5 ft. × (1 m/3.28 ft.) = 3.81 m. Next, find the total area in square meters: total area = 2(4.57 m × 2.74 m) + 2(3.81 m × 2.74 m) = 45.9 m². Finally, convert the area to gallons of paint: 45.9 m² × (1 gallon/32 m²) = 1.43 gallons. Therefore, Bridget will need 1.43 gallons of paint to repaint her bedroom. Choices A, C, and D are incorrect because they do not accurately calculate the required amount of paint based on the given dimensions and the coverage area of one gallon of paint.
5. A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
- A. Histogram
- B. Pie chart
- C. Bar graph
- D. Scatter plot
Correct answer: A
Rationale: A histogram is the best way to display the frequency for each day of the week in this scenario. Histograms are ideal for showing the distribution of numerical data by dividing it into intervals and representing the frequency of each interval with bars. In this case, each day of the week can be represented as a category with the frequency of students getting up after 8 a.m. displayed on the vertical axis. Choice B, a pie chart, would not be suitable for this scenario as it is more appropriate for showing parts of a whole, not frequency distributions. Choice C, a bar graph, could potentially work but is more commonly used to compare different categories rather than displaying frequency distribution data. Choice D, a scatter plot, is used to show the relationship between two variables and is not the best choice for displaying frequency for each day of the week.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access