ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. Which percentage is greatest?
- A. The percentage of Asian Americans among the staff at Hospital X
- B. The percentage of staff members who have been on staff for 10-15 years at Hospital X
- C. The percentage of Doctors among the staff at Hospital X and Hospital Y
- D. The percentage of staff with 1-4 complaints among the staff at Hospital Y
Correct answer: C
Rationale: To determine the highest percentage, we need to calculate each option. The percentage in answer A is: 50 / 250 x 100 = 20%. The percentage in answer B is: 57 / 250 x 100 = 22.8%. The percentage in answer C is: (74 + 55) / 433 x 100 = 29.8%. The percentage in answer D is: 21 / 183 x 100 = 11.5%. Therefore, the correct answer is C, as it has the highest percentage of doctors among the staff at both hospitals. Choices A, B, and D are incorrect as they have lower percentages compared to choice C.
3. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
4. What is a factor?
- A. A number that you multiply to get another number
- B. A number that divides evenly into another number
- C. A number that can be both multiplied and divided by another number
- D. A number that is greater than 1
Correct answer: A
Rationale: A factor is a number that can be multiplied by another number to produce a third number. When you multiply factors together, you get the original number. For example, the factors of 12 are 1, 2, 3, 4, 6, and 12 because these numbers can be multiplied in pairs to give the product 12. Choice B is incorrect as it describes a divisor. Choice C is incorrect because factors are only multiplied, not divided. Choice D is incorrect because factors can be any number, not just those greater than 1.
5. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?
- A. Odd + Odd = Even; Even + Even = Even; Odd + Even = Odd
- B. Odd + Odd = Odd; Even + Even = Even; Odd + Even = Even
- C. Odd + Odd = Even; Even + Even = Odd; Odd + Even = Even
- D. Odd + Odd = Odd; Even + Even = Odd; Odd + Even = Even
Correct answer: A
Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access