ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
3. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
4. During week 1, Nurse Cameron works 5 shifts. During week 2, she worked twice as many shifts as she did in week 1. In week 3, she added 4 shifts to the number of shifts worked in week 2. Which equation describes the number of shifts Nurse Cameron worked in week 3?
- A. Shifts = (2)(5) + 4
- B. Shifts = (4)(5) + 2
- C. Shifts = 5 + 2 + 4
- D. Shifts = (5)(2)(4)
Correct answer: A
Rationale: During week 1, Nurse Cameron worked 5 shifts. In week 2, she worked twice as many shifts as in week 1, which is 10 shifts. In week 3, she added 4 shifts to the number of shifts worked in week 2. Therefore, the total shifts in week 3 can be calculated as (2)(5) + 4 = 10 + 4 = 14 shifts. Choice A correctly represents this calculation. Choices B, C, and D are incorrect because they do not accurately reflect the given scenario and the steps needed to find the total shifts in week 3.
5. The length of a rectangle is 3 units greater than its width. Which expression correctly represents the perimeter of the rectangle?
- A. 2W + 2(W + 3)
- B. W + W + 3
- C. W(W + 3)
- D. 2W + 2(3W)
Correct answer: A
Rationale: To find the perimeter of a rectangle, you add up all its sides. In this case, the length is 3 units greater than the width, so the length can be expressed as W + 3. The formula for the perimeter of a rectangle is 2W + 2(L), where L represents the length. Substituting W + 3 for L, the correct expression for the perimeter becomes 2W + 2(W + 3), which simplifies to 2W + 2W + 6 or 4W + 6. Choices B, C, and D do not correctly represent the formula for the perimeter of a rectangle. Choice B simply adds the width twice to 3, neglecting the length. Choice C multiplies the width by the sum of the width and 3, which is incorrect. Choice D combines the width and 3 times the width, which is not the correct formula for the perimeter of a rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access