ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. There are 20 mg of acetaminophen in concentrated infant drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?
- A. 0.8 mL
- B. 1.6 mL
- C. 2.4 mL
- D. 3.2 mL
Correct answer: C
Rationale: To find the correct dosage in milliliters, divide the total required dosage in milligrams (240 mg) by the concentration of the medication in milligrams per milliliter (20 mg/mL). This calculation yields 12 mL, which is the recommended volume for the child. Choice A, 0.8 mL, is incorrect as it does not correspond to the correct dosage. Choice B, 1.6 mL, is incorrect because it also does not match the calculated dosage. Choice D, 3.2 mL, is incorrect as it is not the accurate result of the dosage calculation. Therefore, the correct answer is C, 2.4 mL.
3. Solve for x in the equation above: (x/y) - z = rw
- A. X = y(z + rw)
- B. X = rw(y - z)
- C. X = rwy + z
- D. X = rwy - z
Correct answer: A
Rationale: To solve for x, first, isolate x by moving the term involving x to one side of the equation. Begin by adding z to both sides of the equation to get (x/y) = rw + z. Then, multiply both sides by y to get x = y(rw + z), which simplifies to x = y(z + rw). Therefore, choice A is correct. Choices B, C, and D are incorrect because they do not correctly rearrange the terms in the equation to solve for x.
4. One roommate is saving to buy a house, so each month, he puts money aside in a special house savings account. The ratio of his monthly house savings to his rent is 1:3. If he pays $270 per month in rent, how much money does he put into his house savings account each month?
- A. $90
- B. $270
- C. $730
- D. $810
Correct answer: A
Rationale: The ratio of his savings to his rent is 1:3, which means that for every $3 he pays in rent, he saves $1 for the purchase of a house. To calculate the amount saved, divide $270 by 3: $270 ÷ 3 = $90. Therefore, he puts $90 into his house savings account each month. Choice B, $270, is incorrect because that is the amount he pays in rent, not the amount saved. Choices C and D, $730 and $810, are incorrect as they do not align with the 1:3 ratio described in the question.
5. A patient is prescribed 5 mg of medication per kilogram of body weight. If the patient weighs 60 kg, how many milligrams of medication should the patient receive?
- A. 100 mg
- B. 150 mg
- C. 300 mg
- D. 400 mg
Correct answer: C
Rationale: The correct calculation to determine the medication dosage for a patient weighing 60 kg is: 5 mg/kg x 60 kg = 300 mg. Therefore, the patient should receive 300 mg of medication. Choice A (100 mg) is incorrect as it does not account for the patient's weight. Choice B (150 mg) is incorrect as it miscalculates the dosage. Choice D (400 mg) is incorrect as it overestimates the dosage based on the patient's weight.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access