ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. As part of a study, a set of patients will be divided into three groups: 1/2 of the patients will be in Group Alpha, 1/3 of the patients will be in Group Beta, and 1/6 of the patients will be in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
- A. Group Alpha, Group Beta, Group Gamma
- B. Group Alpha, Group Gamma, Group Beta
- C. Group Gamma, Group Alpha, Group Beta
- D. Group Gamma, Group Beta, Group Alpha
Correct answer: C
Rationale: The correct order from smallest to largest number of patients in each group is Group Gamma (1/6), Group Alpha (1/2), and Group Beta (1/3). Group Gamma has the smallest fraction of patients, followed by Group Alpha and then Group Beta. Therefore, choice C, 'Group Gamma, Group Alpha, Group Beta,' is the correct answer. Choices A, B, and D are incorrect because they do not follow the correct order based on the fractions of patients assigned to each group.
3. What is the overall median of Dwayne's current scores: 78, 92, 83, 97?
- A. 19
- B. 85
- C. 83
- D. 87.5
Correct answer: B
Rationale: To find the median of a set of numbers, first arrange the scores in ascending order: 78, 83, 92, 97. Since there is an even number of scores, we find the median by taking the average of the two middle values. In this case, the middle values are 83 and 92. Calculating (83 + 92) / 2 = 85, we determine that the overall median of Dwayne's scores is 85. Choice A (19) is incorrect as it does not correspond to any value in the given set of scores. Choice C (83) is the median of the original set but not the overall median once arranged. Choice D (87.5) is the average of all scores but not the median.
4. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
5. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?
- A. 3,000 people
- B. 5,000 people
- C. 7,000 people
- D. 10,000 people
Correct answer: B
Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access