ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
3. In a study on anorexia, 100 patients participated. Among them, 70% were women, and 10% of the men were overweight as children. How many male patients in the study were not overweight as children?
- A. 3
- B. 10
- C. 27
- D. 30
Correct answer: C
Rationale: Out of the 100 patients, 30% were men. Since 10% of the men were overweight as children, 90% of the male patients were not overweight. Therefore, the number of male patients not overweight as children can be calculated as 30 (total male patients) x 0.90 = 27. Choices A, B, and D are incorrect because they do not accurately calculate the number of male patients who were not overweight as children based on the given information.
4. In a fraction, which number is the numerator and which is the denominator?
- A. Numerator: top, Denominator: bottom
- B. Numerator: bottom, Denominator: top
- C. Numerator: left, Denominator: right
- D. Numerator: right, Denominator: left
Correct answer: A
Rationale: The correct answer is A: 'Numerator: top, Denominator: bottom.' In a fraction, the numerator is the top number, representing the part of the whole being considered, while the denominator is the bottom number, indicating the total number of equal parts into which the whole is divided. Choices B, C, and D are incorrect because they provide inaccurate descriptions of the numerator and denominator positions in a fraction.
5. Simplify the following expression: 6 + 7 × 3 - 4 × 2
- A. -42
- B. -20
- C. 23
- D. 20
Correct answer: B
Rationale: ollow the order of operations (PEMDAS: Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)): Multiply: 7 × 3 = 21, and 4 × 2 = 8 Perform addition and subtraction: 6 + 21 - 8 = 19 Thus, the simplified expression equals 19.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access