ATI TEAS 7
TEAS Exam Math Practice
1. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
2. A woman wants to stack two bookcases, one 32.75 inches tall and another 17.25 inches tall. How tall will they be when stacked together?
- A. 49.5 inches
- B. 50 inches
- C. 48 inches
- D. 51 inches
Correct answer: B
Rationale: To find the total height of the stacked bookcases, you need to add the heights of the two bookcases: 32.75 inches + 17.25 inches = 50 inches. Therefore, the correct answer is 50 inches. Choice A (49.5 inches) is incorrect as it does not consider rounding off the total height. Choices C (48 inches) and D (51 inches) are incorrect as they do not accurately calculate the sum of the heights of the two bookcases.
3. A study was conducted where patients were divided into three groups: 1/2 in Group Alpha, 1/3 in Group Beta, and 1/6 in Group Gamma. Which group is the smallest?
- A. Group Alpha
- B. Group Beta
- C. Group Gamma
- D. Group Gamma
Correct answer: C
Rationale: The smallest group is Group Gamma, which had 1/6 of the total number of patients. To determine the smallest group, compare the fractions representing the portions of patients in each group. 1/6 is smaller than 1/3 and 1/2, making Group Gamma the smallest. Group Alpha and Group Beta have larger fractions of patients, making them larger groups compared to Group Gamma.
4. In the problem 6 + 3 × 2, which operation should be completed first?
- A. Multiplication
- B. Addition
- C. Division
- D. Subtraction
Correct answer: A
Rationale: The correct answer is 'Multiplication.' According to the order of operations (PEMDAS), which stands for Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right), multiplication should be completed first. In the given expression, 3 × 2 should be solved before adding 6 to the result. This means that the multiplication operation should be prioritized over addition. Choices B, C, and D are incorrect because, in the order of operations, multiplication takes precedence over addition, division, and subtraction, respectively.
5. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access