ATI TEAS 7
Practice Math TEAS TEST
1. A large pizza has a diameter of 9 inches. Which of the following is the area of the pizza in terms of pi?
- A. 11.25 πin²
- B. 29.57 πin²
- C. 18.35 πin²
- D. 20.25 πin²
Correct answer: D
Rationale: To find the area of a circle, we use the formula A = πr², where r is the radius of the circle. In this case, the diameter is 9 inches, so the radius is half of the diameter, which is 4.5 inches. Substituting the radius into the formula, we get A = π(4.5)² = 20.25 πin². Therefore, the correct answer is 20.25 πin². Choices A, B, and C are incorrect because they do not correctly calculate the area using the radius of the circle.
2. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
3. Out of 9 trips, a person chooses the longest route for 3 of them. What percentage of their trips is the longest route?
- A. 0.25
- B. 0.33
- C. 0.5
- D. 0.75
Correct answer: B
Rationale: To find the percentage of trips where the person chose the longest route, divide the number of longest route trips (3) by the total number of trips (9) and multiply by 100. This gives (3/9) * 100 = 33.33%, which can be rounded to 33%. Therefore, the correct answer is B. Choice A (0.25), C (0.5), and D (0.75) are incorrect because they do not accurately represent the percentage of trips where the longest route was chosen based on the given information.
4. Two boxes are stacked, one measuring 4 inches tall and the other 6 inches tall. What is the total height of the stacked boxes?
- A. 10 inches
- B. 12 inches
- C. 8 inches
- D. 9 inches
Correct answer: A
Rationale: To find the total height of the stacked boxes, you need to add the height of each box together. Therefore, 4 inches (height of the first box) + 6 inches (height of the second box) = 10 inches, which is the total height of the stacked boxes. Choice B (12 inches) is incorrect because it adds the heights incorrectly. Choice C (8 inches) is incorrect as it does not consider both box heights. Choice D (9 inches) is incorrect as it also does not add the heights accurately.
5. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access