ATI TEAS 7
TEAS 7 Math Practice Test
1. A can has a radius of 1.5 inches and a height of 3 inches. Which of the following best represents the volume of the can?
- A. 17.2 in³
- B. 19.4 in³
- C. 21.2 in³
- D. 23.4 in³
Correct answer: C
Rationale: The volume of a cylinder is calculated using the formula V = πr²h, where r is the radius and h is the height. Substituting the given values (r = 1.5 inches, h = 3 inches) into the formula yields V ≈ 21.2 in³. Therefore, the correct answer is C. Choice A, 17.2 in³, is incorrect as it does not correspond to the correct calculation. Choice B, 19.4 in³, is also incorrect and does not match the calculated volume. Choice D, 23.4 in³, is not the correct volume obtained when using the provided dimensions in the formula for the volume of a cylinder.
2. In a graph that shows the number of nurses in various specialties, what is the independent variable?
- A. Anesthesia
- B. Geriatrics
- C. Nurse specialties
- D. Number of nurses
Correct answer: C
Rationale: The independent variable is the variable that is controlled or manipulated in an experiment or study. In this case, the independent variable is the nurse specialties because it is the factor that is being observed and measured to see how it affects the number of nurses in each specialty. The dependent variable, which changes in response to the independent variable, is the number of nurses. Choices A and B are specific nurse specialties and are actually part of the data being measured, not the independent variable itself. Choice D, 'Number of nurses,' is the dependent variable as it is the outcome that is being influenced by the independent variable, which is the nurse specialties.
3. A triangle has dimensions of 9 cm, 4 cm, and 7 cm. The triangle is reduced by a scale factor of x. Which of the following represents the dimensions of the dilated triangle?
- A. 8.25 cm, 3.25 cm, 6.25 cm
- B. 4.5 cm, 2 cm, 3.5 cm
- C. 6.75 cm, 3 cm, 5.25 cm
- D. 4.95 cm, 2.2 cm, 3.85 cm
Correct answer: C
Rationale: When reducing a figure by a scale factor, each dimension is multiplied by the same scale factor. In this case, the scale factor is not provided in the question. To find the scale factor, you would divide the new lengths of the sides by the original lengths. The scaled-down triangle's dimensions are the original dimensions multiplied by the scale factor. By performing the calculations, the dimensions of the dilated triangle are 6.75 cm, 3 cm, and 5.25 cm, which matches choice C. Choices A, B, and D have incorrect dimensions as they do not result from the correct application of the scale factor to the original triangle's dimensions.
4. What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
- A. 30
- B. 25
- C. 7
- D. 19
Correct answer: A
Rationale: To find the least common denominator for fractions 1/2, 2/3, and 4/5, we need to identify the least common multiple of the denominators. The denominators are 2, 3, and 5. The least common multiple of 2, 3, and 5 is 30. Therefore, 30 is the least common denominator for these fractions. Choice B (25), C (7), and D (19) are incorrect because they are not the least common multiple of the denominators of the given fractions.
5. What is any number raised to the power of 1?
- A. Itself
- B. One
- C. Zero
- D. The number multiplied by 2
Correct answer: A
Rationale: The correct answer is A: 'Itself.' When any number is raised to the power of 1, it remains unchanged and is equal to itself. This is a fundamental property of exponents. Choice B, 'One,' is incorrect because raising a number to the power of 1 does not result in the answer being 1. Choice C, 'Zero,' is incorrect as any non-zero number raised to the power of 1 is itself, not zero. Choice D, 'The number multiplied by 2,' is incorrect because raising a number to the power of 1 does not involve multiplying it by 2.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access