ATI TEAS 7
TEAS Exam Math Practice
1. What is the result of (4.71 × 10^3) - (2.98 × 10^2)? Which of the following is the correct simplified expression?
- A. 1.73 × 10
- B. 4.412 × 10^2
- C. 1.73 × 10^3
- D. 4.412 × 10^3
Correct answer: D
Rationale: The correct answer is D: 4.412 × 10^3. To simplify the expression, rewrite 4.71 × 10^3 as 47.1 × 10^2. Subtract the values in front of 10^2: 47.1 - 2.98 = 44.12. Rewriting this gives 44.12 × 10^2 = 4.412 × 10^3. Choice A is incorrect as it does not account for the correct subtraction result. Choice B is incorrect as it does not correctly simplify the expression. Choice C is incorrect as it provides an incorrect power of 10 in the simplified expression.
2. In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?
- A. 69.40%
- B. 59.00%
- C. 41.00%
- D. 24.70%
Correct answer: C
Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.
3. A woman wants to stack two bookcases, one 32.75 inches tall and another 17.25 inches tall. How tall will they be when stacked together?
- A. 49.5 inches
- B. 50 inches
- C. 48 inches
- D. 51 inches
Correct answer: B
Rationale: To find the total height of the stacked bookcases, you need to add the heights of the two bookcases: 32.75 inches + 17.25 inches = 50 inches. Therefore, the correct answer is 50 inches. Choice A (49.5 inches) is incorrect as it does not consider rounding off the total height. Choices C (48 inches) and D (51 inches) are incorrect as they do not accurately calculate the sum of the heights of the two bookcases.
4. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
5. A mathematics test has a 4:2 ratio of data analysis problems to algebra problems. If the test has 18 algebra problems, how many data analysis problems are on the test?
- A. 24
- B. 28
- C. 36
- D. 38
Correct answer: C
Rationale: The ratio of 4:2 simplifies to 2:1. This means that for every 2 algebra problems, there is 1 data analysis problem. If there are 18 algebra problems, we can set up a proportion: 2 algebra problems correspond to 1 data analysis problem. Therefore, 18 algebra problems correspond to x data analysis problems. Solving the proportion, x = 18 * 1 / 2 = 9. Hence, there are 9 data analysis problems on the test. Therefore, the total number of data analysis problems on the test is 18 (algebra problems) + 9 (data analysis problems) = 27.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access