ATI TEAS 7
Math Practice TEAS Test
1. Which of the following best describes the relationship in this set of data?
- A. High positive correlation
- B. Low positive correlation
- C. Low negative correlation
- D. No correlation
Correct answer: B
Rationale: The correct answer is 'B: Low positive correlation.' In a low positive correlation, the variables tend to increase together, but the relationship is not strong. This description fits the data set provided. Choice A, 'High positive correlation,' is incorrect because the correlation is not strong. Choice C, 'Low negative correlation,' is incorrect as the variables are not decreasing together. Choice D, 'No correlation,' is incorrect because there is a relationship between the variables, albeit weak.
2. In Jim's school, there are 3 girls for every 2 boys. There are 650 students in total. Using this information, how many students are girls?
- A. 260
- B. 130
- C. 65
- D. 390
Correct answer: A
Rationale: To find the number of girls in Jim's school, we first establish the ratio of girls to boys as 3:2. This ratio implies that out of every 5 students (3 girls + 2 boys), 3 are girls and 2 are boys. Since there are a total of 650 students, we can divide them into 5 equal parts based on the ratio. Each part represents 650 divided by 5, which is 130. Therefore, there are 3 parts of girls in the school, totaling 3 multiplied by 130, which equals 390. Hence, there are 390 girls in Jim's school. Choice A, 260, is incorrect as it does not consider the correct ratio and calculation. Choice B, 130, is incorrect as it only represents one part of the total students, not the number of girls. Choice C, 65, is incorrect as it ignores the total number of students and the ratio provided.
3. A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop’s revenue (r) is over three days?
- A. r = 4s + 2d + 1c
- B. r = 8s + 4d + 2c
- C. r = 12s + 6d + 3c
- D. r = 16s + 8d + 4c
Correct answer: A
Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.
4. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
5. Solve for x: 3(x - 1) = 2(3x - 9)
- A. x = 2
- B. x = 8/3
- C. x = -5
- D. x = 5
Correct answer: D
Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access