ATI TEAS 7
ATI TEAS Math Practice Test
1. Veronica has to create the holiday schedule for the neonatal unit at her hospital. 35% of her staff will be unavailable during the holidays, and of the remaining staff, only 20% are certified to work in the neonatal unit. What percentage of the total staff is certified and available to work?
- A. 7%
- B. 13%
- C. 65%
- D. 80%
Correct answer: B
Rationale: The correct answer is 13%. To find the percentage of the total staff that is certified and available to work, we first calculate the percentage of staff available, which is 100% - 35% = 65%. Then, we find the percentage of the available staff that is certified, which is 20% of 65% = 0.20 × 0.65 = 0.13, or 13%.
2. In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
- A. 0.23
- B. 0.3
- C. 0.47
- D. 0.77
Correct answer: A
Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 ÷ 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.
3. What is the median of Pernell's scores (81, 92, 87, 89, and 94)?
- A. 87
- B. 89
- C. 92
- D. 94
Correct answer: B
Rationale: To find the median, we first need to arrange the scores in ascending order: 81, 87, 89, 92, 94. Since there are five scores, the middle score would be the third one, which is 89. Hence, the median of Pernell's scores is 89. Choice A (87) is incorrect because it is the second score in the ordered list, not the middle one. Choice C (92) and Choice D (94) are also incorrect as they are not positioned in the middle of the ordered series.
4. A woman wants to stack two bookcases, one 32.75 inches tall and another 17.25 inches tall. How tall will they be when stacked together?
- A. 49.5 inches
- B. 50 inches
- C. 48 inches
- D. 51 inches
Correct answer: B
Rationale: To find the total height of the stacked bookcases, you need to add the heights of the two bookcases: 32.75 inches + 17.25 inches = 50 inches. Therefore, the correct answer is 50 inches. Choice A (49.5 inches) is incorrect as it does not consider rounding off the total height. Choices C (48 inches) and D (51 inches) are incorrect as they do not accurately calculate the sum of the heights of the two bookcases.
5. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access