veronica has to create the holiday schedule for the neonatal unit at her hospital 35 of her staff will be unavailable during the holidays and of the r
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. Veronica has to create the holiday schedule for the neonatal unit at her hospital. 35% of her staff will be unavailable during the holidays, and of the remaining staff, only 20% are certified to work in the neonatal unit. What percentage of the total staff is certified and available to work?

Correct answer: B

Rationale: The correct answer is 13%. To find the percentage of the total staff that is certified and available to work, we first calculate the percentage of staff available, which is 100% - 35% = 65%. Then, we find the percentage of the available staff that is certified, which is 20% of 65% = 0.20 × 0.65 = 0.13, or 13%.

2. Express as an improper fraction: 8 3/7

Correct answer: D

Rationale: To convert the mixed number 8 3/7 to an improper fraction, multiply the whole number (8) by the denominator (7) and add the numerator (3) to get the numerator of the improper fraction. This gives us (8*7 + 3) / 7 = 59/7. Therefore, the correct answer is 59/7. Choice A (11/7), choice B (21/8), and choice C (5/3) are incorrect because they do not correctly convert the mixed number to an improper fraction.

3. A piece of wood that is 7 1/2 feet long has 3 1/4 feet cut off. How many feet of wood remain?

Correct answer: A

Rationale: To find the remaining length of wood, you need to subtract 3 1/4 feet from 7 1/2 feet. When you subtract the fractions, 7 1/2 - 3 1/4, you get 15/2 - 13/4 = 30/4 - 13/4 = 17/4 = 4 1/4 feet. Therefore, the correct answer is 4 1/4 feet. Choice B (4 1/2 feet) is incorrect because the subtraction result is not 1/2. Choice C (3 1/2 feet) is incorrect as it does not match the correct result of 4 1/4 feet. Choice D (3 3/4 feet) is also incorrect as it does not align with the correct answer obtained from the subtraction of fractions.

4. If , then

Correct answer: C

Rationale: If \(2x = 6\), then solving for \(x\), we have \(x = \frac{6}{2} = 3\). So, if \(x = 3\), then \(x+1 = 3+1 = 4\). Therefore, the value of \(x+1\) would be 4.

5. If a product's original price is $80 and it is discounted by 20%, what is the final price?

Correct answer: A

Rationale: To find the discounted price, you first calculate 20% of the original price: 20% of $80 is $16. Subtracting this discount amount from the original price gives the final price: $80 - $16 = $64. Therefore, the final price after a 20% discount on a product originally priced at $80 is $64. Choice B, $60, is incorrect because it does not account for the correct discount amount. Choice C, $70, is incorrect as it does not reflect the reduction due to the 20% discount. Choice D, $66, is incorrect as it miscalculates the discounted price.

Similar Questions

Eric buys 5 1/2 pounds of apples each week for four weeks. How many total pounds does he buy?
What is the result of (6.4)(2.8) ÷ 0.4? Which of the following is correct?
What is the simplified form of the expression (x^2 + 2x)/(x)?
What is the median of the data set: 3, 5, 7, 9, 11?
Which of the following is NOT a way to write 40 percent of N?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses