ATI TEAS 7
TEAS Practice Math Test
1. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
2. In Jim's school, there are 3 girls for every 2 boys. There are 650 students in total. Using this information, how many students are girls?
- A. 260
- B. 130
- C. 65
- D. 390
Correct answer: A
Rationale: To find the number of girls in Jim's school, we first establish the ratio of girls to boys as 3:2. This ratio implies that out of every 5 students (3 girls + 2 boys), 3 are girls and 2 are boys. Since there are a total of 650 students, we can divide them into 5 equal parts based on the ratio. Each part represents 650 divided by 5, which is 130. Therefore, there are 3 parts of girls in the school, totaling 3 multiplied by 130, which equals 390. Hence, there are 390 girls in Jim's school. Choice A, 260, is incorrect as it does not consider the correct ratio and calculation. Choice B, 130, is incorrect as it only represents one part of the total students, not the number of girls. Choice C, 65, is incorrect as it ignores the total number of students and the ratio provided.
3. Kyle has $950 in savings and wishes to donate one-fifth of it to 8 local charities. He estimates that he will donate around $30 to each charity. Which of the following correctly describes the reasonableness of his estimate?
- A. It is reasonable because $190 is one-fifth of $950
- B. It is reasonable because $190 is less than one-fifth of $1,000
- C. It is not reasonable because $240 is more than one-fifth of $1,000
- D. It is not reasonable because $240 is one-fifth of $1,000
Correct answer: C
Rationale: Kyle initially had $950 in savings, and one-fifth of that amount would be $190. Since he wishes to donate around $30 to each charity, the total amount he would donate to 8 local charities would be $30 x 8 = $240. This amount is more than one-fifth of $1,000, making the estimate not reasonable. Choice A is incorrect because $190 is the correct one-fifth of $950, not $900. Choice B is incorrect as it compares $190 to a different amount ($1,000) rather than the actual total. Choice D is incorrect as it states that $240 is one-fifth of $1,000, which is inaccurate.
4. A patient requires a 30% decrease in the dosage of their medication. Their current dosage is 340 mg. What will their dosage be after the decrease?
- A. 70 mg
- B. 238 mg
- C. 270 mg
- D. 340 mg
Correct answer: B
Rationale: To calculate a 30% decrease in 340 mg, you multiply 340 by 0.3, which equals 102 mg. Subtracting this from the current dosage gives 340 - 102 = 238 mg. Therefore, the correct answer is 238 mg. Choice A (70 mg) is incorrect because it represents a 70% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect the correct calculation for a 30% decrease. Choice D (340 mg) is the initial dosage and not the reduced dosage after a 30% decrease.
5. If Hannah spends at least $16 on 4 packages of coffee, which of the following inequalities represents the possible costs?
- A. 16 ≥ 4p
- B. 16 < 4p
- C. 16 > 4p
- D. 16 ≤ 4p
Correct answer: D
Rationale: To represent the relationship between the number of packages of coffee and the minimum cost, the inequality can be written as 4p ≥ 16 (cost is at least $16). This inequality can also be expressed as 16 ≤ 4p, which reads as the cost being less than or equal to $16. Therefore, the correct answer is D. Choice A (16 ≥ 4p) implies that the cost can be greater than or equal to $16, which does not align with the statement that Hannah spends at least $16. Choice B (16 < 4p) suggests that the cost is less than $16, which contradicts the given information. Choice C (16 > 4p) indicates that the cost is greater than $16, which is not accurate based on the scenario provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access