ATI TEAS 7
ATI TEAS Math Practice Test
1. University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year’s incoming class has 100 students, how many will complete the nursing program?
- A. 75
- B. 20
- C. 15
- D. 5
Correct answer: C
Rationale: Out of the 100 students, 3/4 major in nursing, which equals 75 students. However, only 1/5 of these 75 students will complete the program. Calculating 1/5 of 75 gives us 15 students who will complete the nursing program. Therefore, the correct answer is 15. Choice A (75) is incorrect as it represents the total number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect calculations and do not align with the information provided in the question.
2. If you pull an orange block from a bag of 3 orange, 5 green, and 4 purple blocks, what is the probability of consecutively pulling two more orange blocks without replacement?
- A. 1/12
- B. 3/55
- C. 1/55
- D. 2/33
Correct answer: B
Rationale: To calculate the probability of pulling two more orange blocks consecutively without replacement after the initial orange block is pulled, we need to multiply the probabilities. After the first orange block is pulled, there are 2 orange blocks left out of a total of 11 blocks remaining. So, the probability of pulling a second orange block is 2/11. Therefore, the overall probability is (3/12) * (2/11) = 3/55. Choice A (1/12) is incorrect because it only considers the probability of the first orange block being pulled. Choice C (1/55) is incorrect as it represents the probability of pulling two orange blocks in a row, not the consecutive pulls after the initial pull. Choice D (2/33) is incorrect as it does not reflect the correct calculation for the consecutive pulls of orange blocks.
3. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
4. Which of the following is listed in order from least to greatest?
- A. -2 3/4, -2 7/8, -1/5, 2/5, 1/8
- B. -1/5, 1/8, 2/5, -2 3/4, -2 7/8
- C. -2 7/8, -2 3/4, -1/5, 1/8, 2/5
- D. 1/8, 2/5, -1/5, -2 7/8, -2 3/4
Correct answer: C
Rationale: To determine the order from least to greatest, we can convert all fractions and mixed numbers to decimals or use a least common denominator. Converting the fractions in Choice C to decimals, we get -2.875, -2.75, -0.2, 0.125, and 0.4 when reading from left to right. Negative integers with larger absolute values are less than negative integers with smaller absolute values. Therefore, the correct answer is Choice C. Choices A, B, and D are incorrect because they do not present the numbers in the correct order from least to greatest when converted to decimals or compared using common denominators.
5. Pernell received the following scores on five exams: 81, 92, 87, 89, and 94. What is the approximate average of these scores?
- A. 81
- B. 84
- C. 89
- D. 91
Correct answer: C
Rationale: To calculate the average of Pernell's scores, add all the scores together and then divide by the number of scores. (81 + 92 + 87 + 89 + 94) = 443. Now, divide 443 by 5: 443 ÷ 5 = 89, which is the average score.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access