bob decides to go into business selling lemonade he buys a wooden stand for 45 and sets it up outside his house he igures that the cost of lemons suga
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. Bob decides to go into business selling lemonade. He buys a wooden stand for $45 and sets it up outside his house. He figures that the cost of lemons, sugar, and paper cups for each glass of lemonade sold will be 10¢. Which of these expressions describes his cost for making g glasses of lemonade?

Correct answer: A

Rationale: The cost for making g glasses of lemonade includes the initial cost of the stand ($45) plus 10¢ for each glass of lemonade sold. Therefore, the expression that represents the cost for making g glasses of lemonade is $45 + $0.1 × g, which matches option A. Choice B, $44.90 × g, is incorrect as it does not account for the initial stand cost of $45. Choice C, $44.90 × g + 10¢, is incorrect because it does not include the initial stand cost and incorrectly adds an extra 10¢ for every glass. Choice D, $90, is incorrect as it does not consider the variable cost of 10¢ per glass and only represents the initial stand cost.

2. A recipe calls for 2.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?

Correct answer: C

Rationale: To convert 2.5 teaspoons of vanilla to milliliters, you multiply by the conversion factor: 2.5 teaspoons * 4.93 mL = 12.325 mL. Therefore, the correct amount of vanilla in milliliters is 12.325 mL. Choice A (5.33 mL) is incorrect because it does not account for the correct conversion factor. Choice B (7.43 mL) is incorrect as it also does not use the accurate conversion factor. Choice D (0.507 mL) is incorrect as it represents a miscalculation of the conversion.

3. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?

Correct answer: D

Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.

4. John’s Gym charges its members according to the equation y = 40x, where x is the number of months and y represents the total cost to each customer after x months. Ralph’s Recreation Room charges its members according to the equation y = 45x. What relationship can be determined about the monthly cost to the members of each company?

Correct answer: C

Rationale: The equation y = 40x represents John's Gym charging $40 per month, while the equation y = 45x represents Ralph's Recreation Room charging $45 per month. Since $40 is less than $45, it can be concluded that John's Gym offers a lower monthly membership fee compared to Ralph's Recreation Room. Therefore, the correct answer is that John’s monthly membership fee is less than Ralph’s monthly membership fee. Choices A and B are incorrect because John's fee is not equal to or greater than Ralph's fee. Choice D is incorrect as there is a clear relationship indicating that John’s monthly membership fee is less than Ralph’s monthly membership fee.

5. Juan wishes to compare the percentages of time he spends on different tasks during the workday. Which of the following representations is the most appropriate choice for displaying the data?

Correct answer: D

Rationale: A pie chart is the most appropriate choice for displaying the percentages of time spent on different tasks during the workday because it visually represents parts of a whole. In this case, each task's percentage represents a part of the entire workday, making a pie chart an ideal way to compare these percentages. Line plots, bar graphs, and line graphs are not suitable for showing percentages of a whole; they are more commonly used for tracking trends, comparing values, or showing relationships between variables but do not efficiently represent parts of a whole like a pie chart does.

Similar Questions

What is 15% of 200?
Erma has her eye on two sweaters at her favorite clothing store, but she has been waiting for the store to offer a sale. This week, the store advertises 25% off a second item of equal or lesser value. One sweater is $50, and the other is $44. What will Erma spend?
A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?
What is the least common denominator of two fractions?
How will the number 847.89632 be written if rounded to the nearest hundredth?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses