ATI TEAS 7
Math Practice TEAS Test
1. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?
- A. 6.44 hours
- B. 6.69 hours
- C. 6.97 hours
- D. 5.97 hours
Correct answer: B
Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.
2. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
3. 3(x-2)=12. Solve the equation above for x. Which of the following is the correct answer?
- A. 6
- B. -2
- C. -4
- D. 2
Correct answer: A
Rationale: To solve the equation 3(x-2)=12, first distribute the 3: 3x - 6 = 12. Next, isolate x by adding 6 to both sides: 3x = 18. Finally, divide by 3 to find x: x = 6. Therefore, the correct answer is A (6). Choice B (-2) is incorrect as it does not satisfy the equation. Choice C (-4) is also incorrect as it does not satisfy the equation. Choice D (2) is incorrect as it does not satisfy the equation either.
4. A school has 15 teachers and 20 teaching assistants. They have 200 students. What is the ratio of faculty to students?
- A. 3:20
- B. 4:17
- C. 3:02
- D. 7:40
Correct answer: B
Rationale: The total number of faculty members is 15 teachers + 20 teaching assistants = 35. The ratio of faculty to students is then 35:200, which simplifies to 7:40. Further simplifying by dividing both numbers by 5 gives the ratio 4:20, which can be simplified to 4:17. Therefore, the correct ratio is 4:17. Choices A, C, and D are incorrect ratios and do not match the calculated ratio of faculty members to students in this scenario.
5. When the weights of the newborn babies are graphed, the distribution of weights is symmetric with the majority of weights centered around a single peak. Which of the following describes the shape of this distribution?
- A. Uniform
- B. Bimodal
- C. Bell-shaped
- D. Skewed right
Correct answer: C
Rationale: The correct answer is C: Bell-shaped. A symmetric distribution with a single peak is characteristic of a bell-shaped distribution, also known as a normal distribution. This distribution forms a symmetrical, bell-like curve when graphed. Choice A, 'Uniform,' would describe a distribution where all values have equal probability. Choice B, 'Bimodal,' would indicate a distribution with two distinct peaks. Choice D, 'Skewed right,' suggests a distribution where the tail on the right side is longer or more pronounced, unlike the symmetrical bell-shaped distribution described in the question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access