a bus driver drove 305 miles at 65 mph stopped for 15 minutes then drove another 162 miles at 80 mph how long was the trip
Logo

Nursing Elites

ATI TEAS 7

Math Practice TEAS Test

1. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?

Correct answer: B

Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.

2. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?

Correct answer: A

Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.

3. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.

4. After taking a certain antibiotic, Dr. Lee observed that 30% of all his patients developed an infection. He further noticed that 5% of those patients required hospitalization to recover from the infection. What percentage of Dr. Lee’s patients were hospitalized after taking the antibiotic?

Correct answer: A

Rationale: To find the percentage of Dr. Lee's patients hospitalized, you need to calculate 5% of the 30% who developed an infection. 5% of 30% is 1.5%. Therefore, 1.5% of Dr. Lee's patients were hospitalized. Choice A is correct. Choices B, C, and D are incorrect because they do not accurately reflect the calculation of the percentage of patients requiring hospitalization after taking the antibiotic.

5. Solve for x: x + 5 = x - 3.

Correct answer: A

Rationale: To solve the equation x + 5 = x - 3, we aim to isolate x. By subtracting x from both sides, we get 5 = -3, which is not possible. This indicates that the equation has no solution. Therefore, the correct answer is x = -5. Choices B, C, and D are incorrect as they do not yield a valid solution when substituted back into the original equation.

Similar Questions

A woman wants to stack two bookcases, one 32.75 inches tall and another 17.25 inches tall. How tall will they be when stacked together?
Based on the information in the table showing healthcare spending per capita in a group of African nations, which country experienced the largest increase in dollars spent per capita from 2013 to 2015?
Simplify the following expression: 1.034 + 0.275 - 1.294
What is the formula to find the circumference of a circle?
What is the sum of 3/8 and 5/8?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses